Tell us about your PDF experience.

Architecting Cloud Native .NET
Applications for Azure

Article « 02/01/2024

=@ Microsoft

Architecting
Cloud-Native .NET Apps
{e]@AVAVIL=

Robert Vettor

Steve "ardalis” Smith

Version 1.0

EDITION v1.0.3

Refer changelog @ for the book updates and community contributions.

https://aka.ms/cn-ebook-changelog
https://aka.ms/cn-ebook-changelog
https://aka.ms/learn-pdf-feedback

PUBLISHED BY

Microsoft Developer Division, .NET, and Visual Studio product teams
A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2023 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or
transmitted in any form or by any means without the written permission of the

publisher.

This book is provided "as-is" and expresses the author's views and opinions. The views,
opinions, and information expressed in this book, including URL and other Internet

website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No

real association or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com® on the

"Trademarks" webpage are trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

The Docker whale logo is a registered trademark of Docker, Inc. Used by permission.
All other marks and logos are property of their respective owners.

Authors:

Rob Vettor, Principal MTC (Microsoft Technology Center) Architect for Cloud App

Innovation, Microsoft

Steve "ardalis" Smith, Software Architect and Trainer - Ardalis.com @

Participants and Reviewers:
Cesar De la Torre, Principal Program Manager, .NET team, Microsoft
Nish Anil, Senior Program Manager, .NET team, Microsoft

Jeremy Likness, Senior Program Manager, .NET team, Microsoft

https://www.microsoft.com/
https://www.microsoft.com/
https://ardalis.com/
https://ardalis.com/

Cecil Phillip, Senior Cloud Advocate, Microsoft

Sumit Ghosh, Principal Consultant at Neudesic

Editors:

Maira Wenzel, Program Manager, .NET team, Microsoft

David Pine, Senior Content Developer, .NET docs, Microsoft

Version

This guide has been written to cover .NET 7 version along with many additional updates
related to the same "wave"” of technologies (that is, Azure and additional third-party

technologies) coinciding in time with the .NET 7 release.

Who should use this guide

The audience for this guide is mainly developers, development leads, and architects who

are interested in learning how to build applications designed for the cloud.

A secondary audience is technical decision-makers who plan to choose whether to build

their applications using a cloud-native approach.

How you can use this guide

This guide begins by defining cloud native and introducing a reference application built
using cloud-native principles and technologies. Beyond these first two chapters, the rest
of the book is broken up into specific chapters focused on topics common to most
cloud-native applications. You can jump to any of these chapters to learn about cloud-
native approaches to:

e Data and data access

e Communication patterns
e Scaling and scalability

e Application resiliency

e Monitoring and health

e |dentity and security

e DevOps

This guide is available both in PDF & form and online. Feel free to forward this
document or links to its online version to your team to help ensure common
understanding of these topics. Most of these topics benefit from a consistent
understanding of the underlying principles and patterns, as well as the trade-offs
involved in decisions related to these topics. Our goal with this document is to equip
teams and their leaders with the information they need to make well-informed decisions

for their applications' architecture, development, and hosting.

Send your feedback

This book and related samples are constantly evolving, so your feedback is welcomed. If
you have comments about how this book can be improved and you're reading this book

on <learn.microsoft.com>, use the Feedback section at the bottom of the page:

Feedback

Submit and view feedback for

‘ This product H) This page

() View all page feedback®

As highlighted in the preceding screen capture, the feedback section allows you to

submit feedback for:

e This product: using the .NET product feedback form.
e This page: using a GitHub issue template with the page details.

If you're reading this book as a PDF, you can submit feedback by creating a new .NET
Docs: GitHub issue @ or by using the .NET Architecture eBooks: GitHub issue

template .

https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf
https://github.com/dotnet/docs/issues
https://github.com/dotnet/docs/issues
https://github.com/dotnet/docs/issues
https://aka.ms/ebookfeedback
https://aka.ms/ebookfeedback
https://aka.ms/ebookfeedback
https://learn.microsoft.com/en-us/dotnet/architecture/media/feedback-footer.png#lightbox
https://learn.microsoft.com/en-us/dotnet/architecture/media/feedback-footer.png#lightbox

Introduction to cloud-native
applications

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Another day, at the office, working on "the next big thing."

Your cellphone rings. It's your friendly recruiter - the one who calls daily with exciting

new opportunities.
But this time it's different: Start-up, equity, and plenty of funding.

The mention of the cloud, microservices, and cutting-edge technology pushes you over
the edge.

Fast forward a few weeks and you're now a new employee in a design session
architecting a major eCommerce application. You're going to compete with the leading

eCommerce sites.
How will you build it?

If you follow the guidance from past 15 years, you'll most likely build the system shown
in Figure 1.1.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

—_—— I —_—— | F] I —_—— | —_— — _— —_—— _—— —_—] | [| |
Client app | [Monolithic server process I r Database |
I = I f, _h\: I-"/-r Modules %\\ I I I
— 1 o
g — . .
I - | : S g entity Catalog i | | I
| Traditional web appl : - - | | e
[| ,_|_> Relational
1 B T T | | lf \: | Ordering Basket | database I
' | I I |
| =
[| Webapp | | - - | I
I I S - ', Marketing Location
S L I

Figure 1-1. Traditional monolithic design

You construct a large core application containing all of your domain logic. It includes
modules such as Identity, Catalog, Ordering, and more. They directly communicate with
each other within a single server process. The modules share a large relational database.
The core exposes functionality via an HTML interface and a mobile app.

Congratulations! You just created a monolithic application.

Not all is bad. Monoliths offer some distinct advantages. For example, they're

straightforward to...

e build

o test

e deploy

e troubleshoot

e vertically scale

Many successful apps that exist today were created as monoliths. The app is a hit and
continues to evolve, iteration after iteration, adding more functionality.

At some point, however, you begin to feel uncomfortable. You find yourself losing
control of the application. As time goes on, the feeling becomes more intense, and you

eventually enter a state known as the Fear Cycle:

e The app has become so overwhelmingly complicated that no single person
understands it.

* You fear making changes - each change has unintended and costly side effects.

e New features/fixes become tricky, time-consuming, and expensive to implement.

e Each release becomes as small as possible and requires a full deployment of the
entire application.

e One unstable component can crash the entire system.

e New technologies and frameworks aren't an option.

e It's difficult to implement agile delivery methodologies.
e Architectural erosion sets in as the code base deteriorates with never-ending
"quick fixes."

e Finally, the consultants come in and tell you to rewrite it.

Sound familiar?

Many organizations have addressed this monolithic fear cycle by adopting a cloud-
native approach to building systems. Figure 1-2 shows the same system built applying
cloud-native techniques and practices.

F____-_________________

Client apps | bocker Host (" 1dentity microservice (sTs-users) |
I ty
Mobile app I 5, : Relationa L\ I
I d. ! [m -_'a database : 5 I
I \:__ _:
(Catalog microservice 1
I - N
Relation . —
I I : m - i d;t;bas: | o I
N S ':—_
I I lr' Ordering microservice ™ & |
_______ —n |
I \l : Ord rnc.;i\;\‘-’h B Relationa ! E ?— g I
| webapp | NEM | g B e L 43
I I I g _Gmefenduorerse, __________ / v E
g - 0
——————— - < (Basket microservice ! IE/' 5 !
| : N -
I : m'_’ Redis cache : :‘i I
I | N J = I
I I If/ Marketing microservice Y P I
|
! 0 w/
] o5l
I stahase '
I | | g !
I \i:::::::::::::::::::::::::i
I [Locations microservice ' / I
! MOSD
I I 'L . - 3}._-‘ ?:;t_;‘l_:'(-ése i I

Figure 1-2. Cloud-native design

Note how the application is decomposed across a set of small isolated microservices.
Each service is self-contained and encapsulates its own code, data, and dependencies.
Each is deployed in a software container and managed by a container orchestrator.
Instead of a large relational database, each service owns it own datastore, the type of
which vary based upon the data needs. Note how some services depend on a relational
database, but other on NoSQL databases. One service stores its state in a distributed
cache. Note how all traffic routes through an API Gateway service that is responsible for
routing traffic to the core back-end services and enforcing many cross-cutting concerns.
Most importantly, the application takes full advantage of the scalability, availability, and
resiliency features found in modern cloud platforms.

Cloud-native computing

Hmm... We just used the term, Cloud Native. Your first thought might be, "What exactly
does that mean?" Another industry buzzword concocted by software vendors to market
more stuff?"

Fortunately it's far different, and hopefully this book will help convince you.

Within a short time, cloud native has become a driving trend in the software industry.
It's a new way to construct large, complex systems. The approach takes full advantage of
modern software development practices, technologies, and cloud infrastructure. Cloud
native changes the way you design, implement, deploy, and operationalize systems.

Unlike the continuous hype that drives our industry, cloud native is for-real. Consider the
Cloud Native Computing Foundation @ (CNCF), a consortium of over 400 major
corporations. Its charter is to make cloud-native computing ubiquitous across
technology and cloud stacks. As one of the most influential open-source groups, it hosts
many of the fastest-growing open source-projects in GitHub. These projects include

Kubernetes @, Prometheus ', Helm &, Envoy @', and gRPC'.

The CNCF fosters an ecosystem of open-source and vendor-neutrality. Following that
lead, this book presents cloud-native principles, patterns, and best practices that are
technology agnostic. At the same time, we discuss the services and infrastructure
available in the Microsoft Azure cloud for constructing cloud-native systems.

So, what exactly is Cloud Native? Sit back, relax, and let us help you explore this new
world.

https://www.cncf.io/
https://www.cncf.io/
https://kubernetes.io/
https://kubernetes.io/
https://prometheus.io/
https://prometheus.io/
https://helm.sh/
https://helm.sh/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://grpc.io/
https://grpc.io/

What is Cloud Native?

Article « 12/14/2023

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Stop what you're doing and ask your colleagues to define the term "Cloud Native".
There's a good chance you'll get several different answers.

Let's start with a simple definition:

Cloud-native architecture and technologies are an approach to designing,
constructing, and operating workloads that are built in the cloud and take full

advantage of the cloud computing model.

The Cloud Native Computing Foundation® provides the official definition':

Cloud-native technologies empower organizations to build and run scalable
applications in modern, dynamic environments such as public, private, and hybrid
clouds. Containers, service meshes, microservices, immutable infrastructure, and

declarative APIs exemplify this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-

impact changes frequently and predictably with minimal toil.

https://www.cncf.io/
https://www.cncf.io/
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Cloud native is about speed and agility. Business systems are evolving from enabling
business capabilities to weapons of strategic transformation that accelerate business
velocity and growth. It's imperative to get new ideas to market immediately.

At the same time, business systems have also become increasingly complex with users
demanding more. They expect rapid responsiveness, innovative features, and zero
downtime. Performance problems, recurring errors, and the inability to move fast are no
longer acceptable. Your users will visit your competitor. Cloud-native systems are
designed to embrace rapid change, large scale, and resilience.

Here are some companies who have implemented cloud-native techniques. Think about
the speed, agility, and scalability they've achieved.

. Expand table

Company Experience
Netflix & Has 600+ services in production. Deploys 100 times per day.
Uber& Has 1,000+ services in production. Deploys several thousand times each week.
WeChat® Has 3,000+ services in production. Deploys 1,000 times a day.
As you can see, Netflix, Uber, and, WeChat expose cloud-native systems that consist of
many independent services. This architectural style enables them to rapidly respond to

market conditions. They instantaneously update small areas of a live, complex
application, without a full redeployment. They individually scale services as needed.

The pillars of cloud native

The speed and agility of cloud native derive from many factors. Foremost is cloud
infrastructure. But there's more: Five other foundational pillars shown in Figure 1-3 also
provide the bedrock for cloud-native systems.

I_/"’-_ Modern ™,
. Design

" Backi r1g---_h"\.I
__ Services _,-/

QO
Q00
Q0

Cloud Native &pp

e Micro T,
1
. services

e -
Automation >

Cloud Infrastructure

https://www.infoq.com/news/2013/06/netflix/
https://www.infoq.com/news/2013/06/netflix/
https://www.uber.com/blog/micro-deploy-code/
https://www.uber.com/blog/micro-deploy-code/
https://www.cs.columbia.edu/%7Eruigu/papers/socc18-final100.pdf
https://www.cs.columbia.edu/%7Eruigu/papers/socc18-final100.pdf

Figure 1-3. Cloud-native foundational pillars

Let's take some time to better understand the significance of each pillar.

The cloud

Cloud-native systems take full advantage of the cloud service model.

Designed to thrive in a dynamic, virtualized cloud environment, these systems make
extensive use of Platform as a Service (PaaS)“ compute infrastructure and managed
services. They treat the underlying infrastructure as disposable - provisioned in minutes

and resized, scaled, or destroyed on demand — via automation.

Consider the difference between how we treat pets and commaodities. In a traditional
data center, servers are treated as pets: a physical machine, given a meaningful name,
and cared for. You scale by adding more resources to the same machine (scaling up). If
the server becomes sick, you nurse it back to health. Should the server become

unavailable, everyone notices.

The commaodities service model is different. You provision each instance as a virtual
machine or container. They're identical and assigned a system identifier such as Service-
01, Service-02, and so on. You scale by creating more instances (scaling out). Nobody
notices when an instance becomes unavailable.

The commodities model embraces immutable infrastructure. Servers aren't repaired or
modified. If one fails or requires updating, it's destroyed and a new one is provisioned —

all done via automation.

Cloud-native systems embrace the commodities service model. They continue to run as
the infrastructure scales in or out with no regard to the machines upon which they're

running.

The Azure cloud platform supports this type of highly elastic infrastructure with
automatic scaling, self-healing, and monitoring capabilities.

Modern design

How would you design a cloud-native app? What would your architecture look like? To
what principles, patterns, and best practices would you adhere? What infrastructure and
operational concerns would be important?

The Twelve-Factor Application

https://azure.microsoft.com/overview/what-is-paas/
https://azure.microsoft.com/overview/what-is-paas/

A widely accepted methodology for constructing cloud-based applications is the
Twelve-Factor Application@. It describes a set of principles and practices that
developers follow to construct applications optimized for modern cloud environments.

Special attention is given to portability across environments and declarative automation.

While applicable to any web-based application, many practitioners consider Twelve-
Factor a solid foundation for building cloud-native apps. Systems built upon these
principles can deploy and scale rapidly and add features to react quickly to market
changes.

The following table highlights the Twelve-Factor methodology:

> Expand table

Factor Explanation

1 - Code Base A single code base for each microservice, stored in its own repository. Tracked
with version control, it can deploy to multiple environments (QA, Staging,
Production).

2 - Each microservice isolates and packages its own dependencies, embracing
Dependencies changes without impacting the entire system.

3- Configuration information is moved out of the microservice and externalized
Configurations through a configuration management tool outside of the code. The same
deployment can propagate across environments with the correct configuration

applied.
4 - Backing Ancillary resources (data stores, caches, message brokers) should be exposed
Services via an addressable URL. Doing so decouples the resource from the application,

enabling it to be interchangeable.

5 - Build, Each release must enforce a strict separation across the build, release, and run
Release, Run stages. Each should be tagged with a unique ID and support the ability to roll
back. Modern CI/CD systems help fulfill this principle.

6 - Processes Each microservice should execute in its own process, isolated from other
running services. Externalize required state to a backing service such as a
distributed cache or data store.

7 - Port Binding Each microservice should be self-contained with its interfaces and functionality
exposed on its own port. Doing so provides isolation from other microservices.

8 - Concurrency When capacity needs to increase, scale out services horizontally across multiple
identical processes (copies) as opposed to scaling-up a single large instance on
the most powerful machine available. Develop the application to be concurrent
making scaling out in cloud environments seamless.

https://12factor.net/
https://12factor.net/

Factor

9 - Disposability

10 - Dev/Prod
Parity

11 - Logging

12 - Admin
Processes

Explanation

Service instances should be disposable. Favor fast startup to increase scalability
opportunities and graceful shutdowns to leave the system in a correct state.
Docker containers along with an orchestrator inherently satisfy this
requirement.

Keep environments across the application lifecycle as similar as possible,
avoiding costly shortcuts. Here, the adoption of containers can greatly
contribute by promoting the same execution environment.

Treat logs generated by microservices as event streams. Process them with an
event aggregator. Propagate log data to data-mining/log management tools
like Azure Monitor or Splunk and eventually to long-term archival.

Run administrative/management tasks, such as data cleanup or computing
analytics, as one-off processes. Use independent tools to invoke these tasks
from the production environment, but separately from the application.

In the book, Beyond the Twelve-Factor App &, author Kevin Hoffman details each of the

original 12 factors (written in 2011). Additionally, he discusses three extra factors that

reflect today's modern cloud application design.

New Factor

13 - API First

14 - Telemetry

.. Expand table

Explanation

Make everything a service. Assume your code will be consumed by a
front-end client, gateway, or another service.

On a workstation, you have deep visibility into your application and its
behavior. In the cloud, you don't. Make sure your design includes the
collection of monitoring, domain-specific, and health/system data.

15 - Authentication/ Implement identity from the start. Consider RBAC (role-based access

Authorization

control) features available in public clouds.

We'll refer to many of the 12+ factors in this chapter and throughout the book.

Azure Well-Architected Framework

Designing and deploying cloud-based workloads can be challenging, especially when

implementing cloud-native architecture. Microsoft provides industry standard best

practices to help you and your team deliver robust cloud solutions.

The Microsoft Well-Architected Framework provides a set of guiding tenets that can be

used to improve the quality of a cloud-native workload. The framework consists of five

https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://learn.microsoft.com/en-us/azure/role-based-access-control/overview
https://learn.microsoft.com/en-us/azure/role-based-access-control/overview
https://learn.microsoft.com/en-us/azure/architecture/framework/

pillars of architecture excellence:

Tenets

Cost
management

Operational
excellence

Performance
efficiency

Reliability

Security

- Expand table

Description

Focus on generating incremental value early. Apply Build-Measure-Learn
principles to accelerate time to market while avoiding capital-intensive
solutions. Using a pay-as-you-go strategy, invest as you scale out, rather than
delivering a large investment up front.

Automate the environment and operations to increase speed and reduce
human error. Roll problem updates back or forward quickly. Implement
monitoring and diagnostics from the start.

Efficiently meet demands placed on your workloads. Favor horizontal scaling
(scaling out) and design it into your systems. Continually conduct performance
and load testing to identify potential bottlenecks.

Build workloads that are both resilient and available. Resiliency enables
workloads to recover from failures and continue functioning. Availability
ensures users access to your workload at all times. Design applications to
expect failures and recover from them.

Implement security across the entire lifecycle of an application, from design and
implementation to deployment and operations. Pay close attention to identity
management, infrastructure access, application security, and data sovereignty
and encryption.

To get started, Microsoft provides a set of online assessments to help you assess your

current cloud workloads against the five well-architected pillars.

Microservices

Cloud-native systems embrace microservices, a popular architectural style for

constructing modern applications.

Built as a distributed set of small, independent services that interact through a shared

fabric, microservices share the following characteristics:

e Each implements a specific business capability within a larger domain context.

e Each is developed autonomously and can be deployed independently.

e Each is self-contained encapsulating its own data storage technology,

dependencies, and programming platform.

https://learn.microsoft.com/en-us/azure/architecture/framework/#cost-optimization
https://learn.microsoft.com/en-us/azure/architecture/framework/#cost-optimization
https://learn.microsoft.com/en-us/azure/architecture/framework/#operational-excellence
https://learn.microsoft.com/en-us/azure/architecture/framework/#operational-excellence
https://learn.microsoft.com/en-us/azure/architecture/framework/#performance-efficiency
https://learn.microsoft.com/en-us/azure/architecture/framework/#performance-efficiency
https://learn.microsoft.com/en-us/azure/architecture/framework/#reliability
https://learn.microsoft.com/en-us/azure/architecture/framework/#security
https://learn.microsoft.com/en-us/assessments/?mode=pre-assessment&session=local

e Each runs in its own process and communicates with others using standard
communication protocols such as HTTP/HTTPS, gRPC, WebSockets, or AMQP t£'.

e They compose together to form an application.

Figure 1-4 contrasts a monolithic application approach with a microservices approach.
Note how the monolith is composed of a layered architecture, which executes in a single
process. It typically consumes a relational database. The microservice approach,
however, segregates functionality into independent services, each with its own logic,
state, and data. Each microservice hosts its own datastore.

Web Tier [(w | a
. T

hiobile

Services Tier 005 / Wb Apps
HEENEBN AN EEEEEENﬁ..... EEEER

0L DB

_————— - -
s

-
L}
L}
= 1 |r i
r - | |
. L - I
Jo-50L . | I |
| . | | |
|] I I I
Monclithic Databases are . J 1 }
shared across all services - e — N ——— S
= Microservice Microservice Microservice
"

|
Data Tier :
|
l

o

Monolithic Approach Microservices Approach

Figure 1-4. Monolithic versus microservices architecture

Note how microservices promote the Processes principle from the Twelve-Factor
Application®', discussed earlier in the chapter.

Factor #6 specifies "Each microservice should execute in its own process, isolated from

other running services."

Why microservices?
Microservices provide agility.

Earlier in the chapter, we compared an eCommerce application built as a monolith to

that with microservices. In the example, we saw some clear benefits:

e Each microservice has an autonomous lifecycle and can evolve independently and
deploy frequently. You don't have to wait for a quarterly release to deploy a new
feature or update. You can update a small area of a live application with less risk of
disrupting the entire system. The update can be made without a full redeployment
of the application.

https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
https://12factor.net/
https://12factor.net/
https://12factor.net/

e Each microservice can scale independently. Instead of scaling the entire application
as a single unit, you scale out only those services that require more processing
power to meet desired performance levels and service-level agreements. Fine-
grained scaling provides for greater control of your system and helps reduce
overall costs as you scale portions of your system, not everything.

An excellent reference guide for understanding microservices is .NET Microservices:
Architecture for Containerized .NET Applications . The book deep dives into
microservices design and architecture. It's a companion for a full-stack microservice

reference architecture @ available as a free download from Microsoft.

Developing microservices
Microservices can be created upon any modern development platform.

The Microsoft .NET platform is an excellent choice. Free and open source, it has many
built-in features that simplify microservice development. .NET is cross-platform.

Applications can be built and run on Windows, macQOS, and most flavors of Linux.

.NET is highly performant and has scored well in comparison to Node.js and other
competing platforms. Interestingly, TechEmpower @ conducted an extensive set of
performance benchmarks @ across many web application platforms and frameworks.
.NET scored in the top 10 - well above Node.js and other competing platforms.

NET & is maintained by Microsoft and the .NET community on GitHub.

Microservice challenges

While distributed cloud-native microservices can provide immense agility and speed,

they present many challenges:

Communication

How will front-end client applications communicate with backed-end core
microservices? Will you allow direct communication? Or, might you abstract the back-
end microservices with a gateway facade that provides flexibility, control, and security?

How will back-end core microservices communicate with each other? Will you allow
direct HTTP calls that can increase coupling and impact performance and agility? Or
might you consider decoupled messaging with queue and topic technologies?

Communication is covered in the Cloud-native communication patterns chapter.

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://www.techempower.com/
https://www.techempower.com/
https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=plaintext
https://www.techempower.com/benchmarks/#section=data-r17&hw=ph&test=plaintext
https://github.com/dotnet/core
https://github.com/dotnet/core

Resiliency

A microservices architecture moves your system from in-process to out-of-process
network communication. In a distributed architecture, what happens when Service B isn't
responding to a network call from Service A? Or, what happens when Service C becomes
temporarily unavailable and other services calling it become blocked?

Resiliency is covered in the Cloud-native resiliency chapter.

Distributed Data

By design, each microservice encapsulates its own data, exposing operations via its
public interface. If so, how do you query data or implement a transaction across multiple
services?

Distributed data is covered in the Cloud-native data patterns chapter.

Secrets

How will your microservices securely store and manage secrets and sensitive
configuration data?

Secrets are covered in detail Cloud-native security.

Manage Complexity with Dapr

Daprt is a distributed, open-source application runtime. Through an architecture of
pluggable components, it dramatically simplifies the plumbing behind distributed
applications. It provides a dynamic glue that binds your application with pre-built
infrastructure capabilities and components from the Dapr runtime. Figure 1-5 shows
Dapr from 20,000 feet.

https://dapr.io/
https://dapr.io/

Application code

App and .) o
m Microservices written in
platform runtime
Any code or framework... —Tw n d ¢ A pgthOﬂ -NET g > Java @

| 1
HTTP API gRPC API

d L
a n!;l time '*E i —_— 'G- :é; ‘Q’ 9

Service- State Publish Bindings Actors Observability Secrets Extensible

* Building blocks Fo— service management and_ (input/output)
invocation subscribe

Y Components =, §3 @ e g C’JDB rgs = FirebasemH:Rabbit (2 9 @ ‘;?KT, it

ooooo
EventHub Kafka ~ AWSSQS GCPpubsub Dypamopp ooRE Senice BUS promatheus App Insights Jaeger

Any cloud or edge infrastructure

Yk Hosting EE icrosoft Azure aws 23 - Alibaba Cloud 1« ﬁ &«

Figure 1-5. Dapr at 20,000 feet.

In the top row of the figure, note how Dapr provides language-specific SDKs & for
popular development platforms. Dapr v1 includes support for .NET, Go, Node.js, Python,
PHP, Java, and JavaScript.

While language-specific SDKs enhance the developer experience, Dapr is platform
agnostic. Under the hood, Dapr's programming model exposes capabilities through
standard HTTP/gRPC communication protocols. Any programming platform can call
Dapr via its native HTTP and gRPC APIs.

The blue boxes across the center of the figure represent the Dapr building blocks. Each
exposes pre-built plumbing code for a distributed application capability that your

application can consume.

The components row represents a large set of pre-defined infrastructure components
that your application can consume. Think of components as infrastructure code you

don't have to write.

The bottom row highlights the portability of Dapr and the diverse environments across

which it can run.

Looking ahead, Dapr has the potential to have a profound impact on cloud-native

application development.

Containers

It's natural to hear the term container mentioned in any cloud native conversation. In the
book, Cloud Native Patterns @, author Cornelia Davis observes that, "Containers are a
great enabler of cloud-native software." The Cloud Native Computing Foundation places

https://docs.dapr.io/developing-applications/sdks/
https://docs.dapr.io/developing-applications/sdks/
https://www.manning.com/books/cloud-native-patterns
https://www.manning.com/books/cloud-native-patterns

microservice containerization as the first step in their Cloud-Native Trail Map &' -

guidance for enterprises beginning their cloud-native journey.

Containerizing a microservice is simple and straightforward. The code, its dependencies,
and runtime are packaged into a binary called a container image . Images are stored in
a container registry, which acts as a repository or library for images. A registry can be
located on your development computer, in your data center, or in a public cloud. Docker
itself maintains a public registry via Docker Hub©'. The Azure cloud features a private
container registry @ to store container images close to the cloud applications that will

run them.

When an application starts or scales, you transform the container image into a running
container instance. The instance runs on any computer that has a container runtime &

engine installed. You can have as many instances of the containerized service as needed.

Figure 1-6 shows three different microservices, each in its own container, all running on

a single host.

Container Container Container

Productz1.0 Basket:2.0 Product:2.0

Runtime vh

[BasketaAPl v2 | || [ProductAPl v2 |
Lib-L v2 | Lib-L v3 | | Lib-L v3 |
| Lb-M w2 |
|

Runtime v7 | | Runtime vb |

-

H Docker
Host Machine ocker

Figure 1-6. Multiple containers running on a container host

Note how each container maintains its own set of dependencies and runtime, which can
be different from one another. Here, we see different versions of the Product
microservice running on the same host. Each container shares a slice of the underlying
host operating system, memory, and processor, but is isolated from one another.

Note how well the container model embraces the Dependencies principle from the

Twelve-Factor Application .

Factor #2 specifies that "Each microservice isolates and packages its own

dependencies, embracing changes without impacting the entire system."

https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png
https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png
https://docs.docker.com/glossary/?term=image
https://docs.docker.com/glossary/?term=image
https://hub.docker.com/
https://hub.docker.com/
https://azure.microsoft.com/services/container-registry/
https://azure.microsoft.com/services/container-registry/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://12factor.net/
https://12factor.net/

Containers support both Linux and Windows workloads. The Azure cloud openly
embraces both. Interestingly, it's Linux, not Windows Server, that has become the more
popular operating system in Azure.

While several container vendors exist, Docker @ has captured the lion's share of the
market. The company has been driving the software container movement. It has become

the de facto standard for packaging, deploying, and running cloud-native applications.

Why containers?

Containers provide portability and guarantee consistency across environments. By
encapsulating everything into a single package, you isolate the microservice and its
dependencies from the underlying infrastructure.

You can deploy the container in any environment that hosts the Docker runtime engine.
Containerized workloads also eliminate the expense of pre-configuring each
environment with frameworks, software libraries, and runtime engines.

By sharing the underlying operating system and host resources, a container has a much
smaller footprint than a full virtual machine. The smaller size increases the density, or
number of microservices, that a given host can run at one time.

Container orchestration

While tools such as Docker create images and run containers, you also need tools to
manage them. Container management is done with a special software program called a
container orchestrator. When operating at scale with many independent running
containers, orchestration is essential.

Figure 1-7 shows management tasks that container orchestrators automate.

-------- -------- --------

Scheduling Affinity/anti-affinity Health monitoring Scaling
Failover Metworking Service discovery Rolling upgrades

Figure 1-7. What container orchestrators do

The following table describes common orchestration tasks.

https://www.docker.com/
https://www.docker.com/

. Expand table

Tasks Explanation

Scheduling Automatically provision container instances.

Affinity/anti- Provision containers nearby or far apart from each other, helping availability
affinity and performance.

Health Automatically detect and correct failures.

monitoring

Failover Automatically reprovision a failed instance to a healthy machine.
Scaling Automatically add or remove a container instance to meet demand.
Networking Manage a networking overlay for container communication.

Service Enable containers to locate each other.

Discovery

Rolling Coordinate incremental upgrades with zero downtime deployment.
Upgrades Automatically roll back problematic changes.

Note how container orchestrators embrace the Disposability and Concurrency
principles from the Twelve-Factor Application .

Factor #9 specifies that "Service instances should be disposable, favoring fast startups
to increase scalability opportunities and graceful shutdowns to leave the system in a
correct state." Docker containers along with an orchestrator inherently satisfy this

requirement.”

Factor #8 specifies that "Services scale out across a large number of small identical
processes (copies) as opposed to scaling-up a single large instance on the most
powerful machine available."

While several container orchestrators exist, Kubernetes @ has become the de facto
standard for the cloud-native world. It's a portable, extensible, open-source platform for
managing containerized workloads.

You could host your own instance of Kubernetes, but then you'd be responsible for
provisioning and managing its resources - which can be complex. The Azure cloud
features Kubernetes as a managed service. Both Azure Kubernetes Service (AKS) © and
Azure Red Hat OpenShift (ARO) ' enable you to fully leverage the features and power
of Kubernetes as a managed service, without having to install and maintain it.

https://12factor.net/
https://12factor.net/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/openshift/
https://azure.microsoft.com/services/openshift/

Container orchestration is covered in detail in Scaling Cloud-Native Applications.

Backing services

Cloud-native systems depend upon many different ancillary resources, such as data
stores, message brokers, monitoring, and identity services. These services are known as

backing services®'.

Figure 1-8 shows many common backing services that cloud-native systems consume.

w Backing

A N Services .7
Monitorin ~ - i
8 o - - Secu_nt',r
01 - - Services
-
Storage = T T~ —=-= ﬁ;:'je """""""" > .
Services - System S~a - Analytics
- - . b T~ -
r— -=" ” ‘ 1 \\ Tea
=" # g ! \ -
k’] ~ .
. — ¥ s |
Strea_mmg H = Distributed
Services E B a Caching
Docubrl'nent Message
Databases Relational Brokers

Databases

Figure 1-8. Common backing services

You could host your own backing services, but then you'd be responsible for licensing,

provisioning, and managing those resources.

Cloud providers offer a rich assortment of managed backing services. Instead of owning
the service, you simply consume it. The cloud provider operates the resource at scale
and bears the responsibility for performance, security, and maintenance. Monitoring,
redundancy, and availability are built into the service. Providers guarantee service level
performance and fully support their managed services - open a ticket and they fix your

issue.

Cloud-native systems favor managed backing services from cloud vendors. The savings
in time and labor can be significant. The operational risk of hosting your own and

experiencing trouble can get expensive fast.

A best practice is to treat a backing service as an attached resource, dynamically bound

to a microservice with configuration information (a URL and credentials) stored in an

https://12factor.net/backing-services
https://12factor.net/backing-services

external configuration. This guidance is spelled out in the Twelve-Factor Application,
discussed earlier in the chapter.

Factor #4 specifies that backing services "should be exposed via an addressable URL.
Doing so decouples the resource from the application, enabling it to be
interchangeable.”

Factor #3 specifies that "Configuration information is moved out of the microservice

and externalized through a configuration management tool outside of the code."

With this pattern, a backing service can be attached and detached without code
changes. You might promote a microservice from QA to a staging environment. You
update the microservice configuration to point to the backing services in staging and
inject the settings into your container through an environment variable.

Cloud vendors provide APIs for you to communicate with their proprietary backing
services. These libraries encapsulate the proprietary plumbing and complexity. However,
communicating directly with these APIs will tightly couple your code to that specific
backing service. It's a widely accepted practice to insulate the implementation details of
the vendor API. Introduce an intermediation layer, or intermediate API, exposing generic
operations to your service code and wrap the vendor code inside it. This loose coupling
enables you to swap out one backing service for another or move your code to a
different cloud environment without having to make changes to the mainline service
code. Dapr, discussed earlier, follows this model with its set of prebuilt building

blocks &

On a final thought, backing services also promote the Statelessness principle from the
Twelve-Factor Application @, discussed earlier in the chapter.

Factor #6 specifies that, "Each microservice should execute in its own process,
isolated from other running services. Externalize required state to a backing service
such as a distributed cache or data store."

Backing services are discussed in Cloud-native data patterns and Cloud-native
communication patterns.

Automation

As you've seen, cloud-native systems embrace microservices, containers, and modern
system design to achieve speed and agility. But, that's only part of the story. How do

https://12factor.net/
https://12factor.net/
https://docs.dapr.io/developing-applications/building-blocks/
https://docs.dapr.io/developing-applications/building-blocks/
https://docs.dapr.io/developing-applications/building-blocks/
https://12factor.net/
https://12factor.net/

you provision the cloud environments upon which these systems run? How do you

rapidly deploy app features and updates? How do you round out the full picture?
Enter the widely accepted practice of Infrastructure as Code, or laC.

With laC, you automate platform provisioning and application deployment. You
essentially apply software engineering practices such as testing and versioning to your
DevOps practices. Your infrastructure and deployments are automated, consistent, and

repeatable.

Automating infrastructure

Tools like Azure Resource Manager, Azure Bicep, Terraform & from HashiCorp, and the
Azure CLI, enable you to declaratively script the cloud infrastructure you require.
Resource names, locations, capacities, and secrets are parameterized and dynamic. The
script is versioned and checked into source control as an artifact of your project. You
invoke the script to provision a consistent and repeatable infrastructure across system

environments, such as QA, staging, and production.

Under the hood, laC is idempotent, meaning that you can run the same script over and
over without side effects. If the team needs to make a change, they edit and rerun the

script. Only the updated resources are affected.

In the article, What is Infrastructure as Code, Author Sam Guckenheimer describes how,
"Teams who implement laC can deliver stable environments rapidly and at scale. They
avoid manual configuration of environments and enforce consistency by representing
the desired state of their environments via code. Infrastructure deployments with laC are
repeatable and prevent runtime issues caused by configuration drift or missing
dependencies. DevOps teams can work together with a unified set of practices and tools

to deliver applications and their supporting infrastructure rapidly, reliably, and at scale."

Automating deployments

The Twelve-Factor Application &, discussed earlier, calls for separate steps when

transforming completed code into a running application.

Factor #5 specifies that "Each release must enforce a strict separation across the
build, release and run stages. Each should be tagged with a unique ID and support
the ability to roll back."

Modern CI/CD systems help fulfill this principle. They provide separate build and
delivery steps that help ensure consistent and quality code that's readily available to

https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://learn.microsoft.com/en-us/azure/azure-resource-manager/bicep/overview
https://www.terraform.io/
https://www.terraform.io/
https://learn.microsoft.com/en-us/cli/azure/
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://12factor.net/
https://12factor.net/

users.

Figure 1-9 shows the separation across the deployment process.

2 3 4
Application Build, Cl,

code repo . integrate, test

(SCC)

CD, deploy

} e Code Jenking anziaic Binary Jenking inzioe Release % I\‘_.'J Cro '\Oﬁ
o Im.: Push (=) Azure Devops [Artifact I:j Azure DevOps Azure

" Code
Push

1
Inner loop

Code,

App/Environment
Configuration

debug

Dev Environment

Figure 1-9. Deployment steps in a ClI/CD Pipeline
In the previous figure, pay special attention to separation of tasks:

1. The developer constructs a feature in their development environment, iterating
through what is called the "inner loop" of code, run, and debug.

2. When complete, that code is pushed into a code repository, such as GitHub, Azure
DevOps, or BitBucket.

3. The push triggers a build stage that transforms the code into a binary artifact. The
work is implemented with a Continuous Integration (Cl) & pipeline. It automatically
builds, tests, and packages the application.

4. The release stage picks up the binary artifact, applies external application and
environment configuration information, and produces an immutable release. The
release is deployed to a specified environment. The work is implemented with a
Continuous Delivery (CD) & pipeline. Each release should be identifiable. You can
say, "This deployment is running Release 2.1.1 of the application."

5. Finally, the released feature is run in the target execution environment. Releases

are immutable meaning that any change must create a new release.

Applying these practices, organizations have radically evolved how they ship software.
Many have moved from quarterly releases to on-demand updates. The goal is to catch
problems early in the development cycle when they're less expensive to fix. The longer
the duration between integrations, the more expensive problems become to resolve.
With consistency in the integration process, teams can commit code changes more
frequently, leading to better collaboration and software quality.

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/bliki/ContinuousDelivery.html
https://martinfowler.com/bliki/ContinuousDelivery.html

Infrastructure as code and deployment automation, along with GitHub and Azure

DevOps are discussed in detail in DevOps.

Candidate apps for cloud native

Article « 12/14/2023

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Think about the apps your organization needs to build. Then, look at the existing apps
in your portfolio. How many of them warrant a cloud-native architecture? All of them?

Perhaps some?

Applying cost/benefit analysis, there's a good chance some wouldn't support the effort.
The cost of becoming cloud native would far exceed the business value of the

application.

What type of application might be a candidate for cloud native?

e Strategic enterprise systems that need to constantly evolve business
capabilities/features

e An application that requires a high release velocity - with high confidence

e A system where individual features must release without a full redeployment of the

entire system
e An application developed by teams with expertise in different technology stacks
e An application with components that must scale independently

Smaller, less impactful line-of-business applications might fare well with a simple

monolithic architecture hosted in a Cloud PaaS environment.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Then there are legacy systems. While we'd all like to build new applications, we're often

responsible for modernizing legacy workloads that are critical to the business.

Modernizing legacy apps

The free Microsoft e-book Modernize existing .NET applications with Azure cloud and
Windows Containers @ provides guidance about migrating on-premises workloads into
cloud. Figure 1-10 shows that there isn't a single, one-size-fits-all strategy for
modernizing legacy applications.

The Journey to the Cloud

Modernize

Migrate

Containerize
+ cloud managed services

Cloud Cloud

Infrastructure- Optimized
Ready apps

on-premises dpPRs

Rearchitect/Rebuild

— A —
an ==
A~ = fadual %
22 == =
On-Premises laaS Containers Microservices Architecture
W — “Lift & shif" & PaaS & Serverless
.i."l :.Il: ,'.ll-': Nang the ck i

No code changes Il arges Architected for oud
modernizedrewrite

Figure 1-10. Strategies for migrating legacy workloads

Monolithic apps that are non-critical might benefit from a quick lift-and-shift migration.
Here, the on-premises workload is rehosted to a cloud-based VM, without changes. This
approach uses the laaS (Infrastructure as a Service) model . Azure includes several
tools such as Azure Migrate @, Azure Site Recovery @', and Azure Database Migration
Service @ to help streamline the move. While this strategy can yield some cost savings,
such applications typically weren't designed to unlock and leverage the benefits of

cloud computing.

Legacy apps that are critical to the business often benefit from an enhanced Cloud
Optimized migration. This approach includes deployment optimizations that enable key
cloud services - without changing the core architecture of the application. For example,
you might containerize the application and deploy it to a container orchestrator, like
Azure Kubernetes Services @, discussed later in this book. Once in the cloud, the
application can consume cloud backing services such as databases, message queues,
monitoring, and distributed caching.

https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/services/azure-migrate/
https://azure.microsoft.com/services/azure-migrate/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/services/site-recovery/
https://azure.microsoft.com/campaigns/database-migration/
https://azure.microsoft.com/campaigns/database-migration/
https://azure.microsoft.com/campaigns/database-migration/
https://learn.microsoft.com/en-us/virtualization/windowscontainers/about/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/

Finally, monolithic apps that provide strategic enterprise functions might best benefit
from a Cloud-Native approach, the subject of this book. This approach provides agility
and velocity. But, it comes at a cost of replatforming, rearchitecting, and rewriting code.
Over time, a legacy application could be decomposed into microservices, containerized,
and ultimately replatformed into a cloud-native architecture.

If you and your team believe a cloud-native approach is appropriate, it behooves you to
rationalize the decision with your organization. What exactly is the business problem
that a cloud-native approach will solve? How would it align with business needs?

e Rapid releases of features with increased confidence?

Fine-grained scalability - more efficient usage of resources?

Improved system resiliency?

Improved system performance?

More visibility into operations?

Blend development platforms and data stores to arrive at the best tool for the job?
e Future-proof application investment?

The right migration strategy depends on organizational priorities and the systems you're
targeting. For many, it may be more cost effective to cloud-optimize a monolithic
application or add coarse-grained services to an N-Tier app. In these cases, you can still

make full use of cloud PaaS capabilities like the ones offered by Azure App Service.

Summary

In this chapter, we introduced cloud-native computing. We provided a definition along
with the key capabilities that drive a cloud-native application. We looked at the types of
applications that might justify this investment and effort.

With the introduction behind, we now dive into a much more detailed look at cloud
native.
References

e Cloud Native Computing Foundation &

e NET Microservices: Architecture for Containerized .NET applications &

e Microsoft Azure Well-Architected Framework

https://www.cncf.io/
https://www.cncf.io/
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://learn.microsoft.com/en-us/azure/architecture/framework/

e Modernize existing .NET applications with Azure cloud and Windows Containers &
e Cloud Native Patterns by Cornelia Davis @

e Cloud native applications: Ship faster, reduce risk, and grow your business &

e Dapr documents

e Beyond the Twelve-Factor Application@

e What is Infrastructure as Code

e Uber Engineering's Micro Deploy: Deploying Daily with Confidence &

e How Netflix Deploys Code

e Overload Control for Scaling WeChat Microservices &

https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://dotnet.microsoft.com/download/thank-you/modernizing-existing-net-apps-ebook
https://www.manning.com/books/cloud-native-patterns
https://www.manning.com/books/cloud-native-patterns
https://tanzu.vmware.com/cloud-native
https://tanzu.vmware.com/cloud-native
https://dapr.io/
https://dapr.io/
https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://content.pivotal.io/blog/beyond-the-twelve-factor-app
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://www.uber.com/blog/micro-deploy-code/
https://www.uber.com/blog/micro-deploy-code/
https://www.infoq.com/news/2013/06/netflix/
https://www.infoq.com/news/2013/06/netflix/
https://www.cs.columbia.edu/%7Eruigu/papers/socc18-final100.pdf
https://www.cs.columbia.edu/%7Eruigu/papers/socc18-final100.pdf

Introducing eShopOnContainers
reference app

Article « 04/07/2022

~

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Microsoft, in partnership with leading community experts, has produced a full-featured
cloud-native microservices reference application, eShopOnContainers. This application is
built to showcase using .NET and Docker, and optionally Azure, Kubernetes, and Visual

Studio, to build an online storefront.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

G @ & Notsecure | hostdockerinternal : e w & @ -

NG

on containers

APPLY |

Showing 12 of 14 products - Page 1- 2 Next

NETBLACK & WHITEMUG ~ S850 NET BLUE HOODIE $12.00 NET BOT BLACK HOODIE $1950 NET FOUNDATION PIN $12.00

Figure 2-1. eShopOnContainers Sample App Screenshot.

Before starting this chapter, we recommend that you download the eShopOnContainers

reference application@. If you do so, it should be easier for you to follow along with the
information presented.

Features and requirements

Let's start with a review of the application's features and requirements. The
eShopOnContainers application represents an online store that sells various physical
products like t-shirts and coffee mugs. If you've bought anything online before, the
experience of using the store should be relatively familiar. Here are some of the basic
features the store implements:

e List catalog items

e Filter items by type

e Filter items by brand

e Add items to the shopping basket

e Edit or remove items from the basket
e Checkout

e Register an account

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

e Signin
e Sign out

e Review orders
The application also has the following non-functional requirements:

e |t needs to be highly available and it must scale automatically to meet increased
traffic (and scale back down once traffic subsides).

e It should provide easy-to-use monitoring of its health and diagnostic logs to help
troubleshoot any issues it encounters.

e |t should support an agile development process, including support for continuous
integration and deployment (Cl/CD).

¢ In addition to the two web front ends (traditional and Single Page Application), the
application must also support mobile client apps running different kinds of
operating systems.

e |t should support cross-platform hosting and cross-platform development.

eShopOnContainers reference application
(Development environment architecture)

[== == = = E T i N RN RN IR R R —
Clientapps Docker Host
I eShop mobile app I I w I
| e 1 —
| N\, |
I I I E.API Gateways;’BFF‘} e I
1 — - |- 5 |
I i ey 5. B
| | ! ; aZl
o 0
] I
| I ! | 22 = |
i | [oal « - | t—
| | 7]
| '_T.rrm—%—’ W o G| e I
- Shopging |)
I I i ‘Web-Sho; 73 ;‘ X % I
I | —
| U ; i % R — |
. A 1
I — (I — N J |
B ——) b e i ey
Ead : } q Logging L ebhooks ! |
TypeScript/Angular 2 i | = ;o) |
|)) | / |
I - —_ S !

Figure 2-2. eShopOnContainers reference application development architecture.

The eShopOnContainers application is accessible from web or mobile clients that access
the application over HTTPS targeting either the ASP.NET Core MVC server application or
an appropriate APl Gateway. API Gateways offer several advantages, such as decoupling
back-end services from individual front-end clients and providing better security. The
application also makes use of a related pattern known as Backends-for-Frontends (BFF),
which recommends creating separate APl gateways for each front-end client. The
reference architecture demonstrates breaking up the API gateways based on whether
the request is coming from a web or mobile client.

The application's functionality is broken up into many distinct microservices. There are
services responsible for authentication and identity, listing items from the product
catalog, managing users' shopping baskets, and placing orders. Each of these separate
services has its own persistent storage. There's no single primary data store with which
all services interact. Instead, coordination and communication between the services is

done on an as-needed basis and by using a message bus.

Each of the different microservices is designed differently, based on their individual
requirements. This aspect means their technology stack may differ, although they're all
built using .NET and designed for the cloud. Simpler services provide basic Create-Read-
Update-Delete (CRUD) access to the underlying data stores, while more advanced
services use Domain-Driven Design approaches and patterns to manage business

complexity.

Different types of microservices

Identity Microservice (sTS+Users)

e A - SQL Server
m - database

Example using
ASPNET Core Identity
& Identity STS

——————

e

Example of a simple
Data-Driven and
CRUD microservice
using EF Core 1.1

Web API

- SCOL Server
m_b- database

Container

~—————

————————————————————————

Example of a Domain-
Driven Design
microservice using
DDD patterns

——————

- SO Server
- database

Data-Driven and CRUD
microservice using

\

: Example of simple
|

|

! Redis Cache

[l.’]_' Redis cache

Container J

| Web AP
I
I
\

Figure 2-3. Different kinds of microservices.

Overview of the code

Because it uses microservices, the eShopOnContainers app includes quite a few separate
projects and solutions in its GitHub repository. In addition to separate solutions and
executable files, the various services are designed to run inside their own containers,
both during local development and at run time in production. Figure 2-4 shows the full
Visual Studio solution, in which the various different projects are organized.

Solution Explorer

nE -3 [£=E

Search Solution Explorer (Ctri+;)
& [Solution 'eShopOnContainers-ServicesAndWebApps' (31 of 31 projects)
B0 Seolution ltems
4 [src
4 [ApiGateways
b B0 Envoy
b EJ Mobile.Bff.Shopping
b £J Web.Bff.Shopping
4 BuildingBlocks
b B Devepaces.Support
i B EventBus
b EJ WebHost
4 Services
4 Basket
b B0 tests
b & &] Basket.API
Catalog
b B0 tests
b &&] Catalog.API
B Identity
b & &7 Identity.API
Ordering
b B0 tests
b &&] Ordering.API
b & [c#] Ordering.BackgroundTasks
b & [c#] Ordering.Domain
b+ & [c#] Ordering.Infrastructure
= En.::';.:_| COrdering.SignalrHub
Payment
b &&] Payment.API
Webhooks
b &&] Webhooks.AP|
Web Apps
b & &1 WebhookClient
b &&] WebMVC
b ~&] WebSPA
b &&] WebStatus
4 [tests
4 ServiceTests
b & T3 Application.FunctionalTests
¢ docker-compose

Figure 2-4. Projects in Visual Studio solution.

The code is organized to support the different microservices, and within each

microservice, the code is broken up into domain logic, infrastructure concerns, and user

interface or service endpoint. In many cases, each service's dependencies can be fulfilled

by Azure services in production, and alternative options for local development. Let's

examine how the application's requirements map to Azure services.

Understanding microservices

This book focuses on cloud-native applications built using Azure technology. To learn
more about microservices best practices and how to architect microservice-based
applications, read the companion book, .NET Microservices: Architecture for

Containerized .NET Applications .

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

Mapping eShopOnContainers to Azure
Services

Article « 04/07/2022

~

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Although not required, Azure is well-suited to supporting the eShopOnContainers
because the project was built to be a cloud-native application. The application is built
with .NET, so it can run on Linux or Windows containers depending on the Docker host.
The application is made up of multiple autonomous microservices, each with its own
data. The different microservices showcase different approaches, ranging from simple
CRUD operations to more complex DDD and CQRS patterns. Microservices
communicate with clients over HTTP and with one another via message-based
communication. The application supports multiple platforms for clients as well, since it
adopts HTTP as a standard communication protocol and includes ASP.NET Core and
Xamarin mobile apps that run on Android, iOS, and Windows platforms. (Xamarin is
unsupported as of May 2024.)

The application's architecture is shown in Figure 2-5. On the left are the client apps,
broken up into mobile, traditional Web, and Web Single Page Application (SPA) flavors.
On the right are the server-side components that make up the system, each of which
can be hosted in Docker containers and Kubernetes clusters. The traditional web app is
powered by the ASP.NET Core MVC application shown in yellow. This app and the
mobile and web SPA applications communicate with the individual microservices

through one or more API gateways. The API gateways follow the "backends for front

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

ends" (BFF) pattern, meaning that each gateway is designed to support a given front-
end client. The individual microservices are listed to the right of the API gateways and
include both business logic and some kind of persistence store. The different services
make use of SQL Server databases, Redis cache instances, and MongoDB/CosmosDB
stores. On the far right is the system's Event Bus, which is used for communication

between the microservices.

eShopOnContainers reference application
(Development environment architecture)

Client apps | Docker Host
| | | Lt " ldentity microservice (5TS+users) ‘;
d | e
—-I | S () Server |
I I — :| - database S
I eShop mobile app | I L P =
g e AT G— " Catalog microservice AN
| & | I /" API Gateways / BFF \ J - . LB
. | SQL Servel —
xPlat. OS I | m—_’ - database I &)
I i0s i ml ! \ J gr RabbitMQ
Android i | - : < : < =
Windows I Mobile-shopping i Ordering microservice) =
' : | O R oz bb
< C [
I | I i ::v:iew-g;r\\‘- S0k Server == or
! ”/ database } 8 3 ©
| — T | T | p—
I I MobiloMarked I __Ordering BackgroundTasks J N
obile-Marketing ! = = - ekl
I | | oo . | Basket microservice =5 'T
| 3 Azure
I } eShop WebApp MVC ! } m_’r Redis cache :‘/ 3 Senvice Bus
I [[— i — i i =
| ASP.NET Core MVC | ! — -
I I I \\ f' Web-Shopping } S 5]
» - N T n N~
I ******************* ! Marketing microservice :/
' | * B0 b e
| ; | U
-
I 5 . <
| L RN I W cosene) X
T [[——— - 777777_”””’. 777777 -z
| | —»m—$—> Locations microservice ;
|
I ‘Web-Marketin | 4% MongoDB/ !
I I \ ? / m E. oz CosmosDB i
I < y i
— J
| -

Figure 2-5. The eShopOnContainers Architecture.

The server-side components of this architecture all map easily to Azure services.

Container orchestration and clustering

The application's container-hosted services, from ASP.NET Core MVC apps to individual
Catalog and Ordering microservices, can be hosted and managed in Azure Kubernetes
Service (AKS). The application can run locally on Docker and Kubernetes, and the same
containers can then be deployed to staging and production environments hosted in
AKS. This process can be automated as we'll see in the next section.

AKS provides management services for individual clusters of containers. The application
will deploy separate containers for each microservice in the AKS cluster, as shown in the
architecture diagram above. This approach allows each individual service to scale
independently according to its resource demands. Each microservice can also be
deployed independently, and ideally such deployments should incur zero system
downtime.

API Gateway

The eShopOnContainers application has multiple front-end clients and multiple different
back-end services. There's no one-to-one correspondence between the client
applications and the microservices that support them. In such a scenario, there may be a
great deal of complexity when writing client software to interface with the various back-
end services in a secure manner. Each client would need to address this complexity on
its own, resulting in duplication and many places in which to make updates as services

change or new policies are implemented.

Azure APl Management (APIM) helps organizations publish APIs in a consistent,
manageable fashion. APIM consists of three components: the APl Gateway, and
administration portal (the Azure portal), and a developer portal.

The API Gateway accepts API calls and routes them to the appropriate back-end API. It
can also provide additional services like verification of API keys or JWT tokens and API
transformation on the fly without code modifications (for instance, to accommodate

clients expecting an older interface).

The Azure portal is where you define the APl schema and package different APIs into
products. You also configure user access, view reports, and configure policies for quotas

or transformations.

The developer portal serves as the main resource for developers. It provides developers
with APl documentation, an interactive test console, and reports on their own usage.
Developers also use the portal to create and manage their own accounts, including

subscription and API key support.

Using APIM, applications can expose several different groups of services, each providing
a back end for a particular front-end client. APIM is recommended for complex
scenarios. For simpler needs, the lightweight APl Gateway Ocelot can be used. The
eShopOnContainers app uses Ocelot because of its simplicity and because it can be
deployed into the same application environment as the application itself. Learn more
about eShopOnContainers, APIM, and Ocelot.

Another option if your application is using AKS is to deploy the Azure Gateway Ingress
Controller as a pod within your AKS cluster. This approach allows your cluster to
integrate with an Azure Application Gateway, allowing the gateway to load-balance

traffic to the AKS pods. Learn more about the Azure Gateway Ingress Controller for
AKS 7,

Data

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern#azure-api-management
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern#azure-api-management
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress
https://github.com/Azure/application-gateway-kubernetes-ingress

The various back-end services used by eShopOnContainers have different storage
requirements. Several microservices use SQL Server databases. The Basket microservice
leverages a Redis cache for its persistence. The Locations microservice expects a
MongoDB API for its data. Azure supports each of these data formats.

For SQL Server database support, Azure has products for everything from single
databases up to highly scalable SQL Database elastic pools. Individual microservices can
be configured to communicate with their own individual SQL Server databases quickly
and easily. These databases can be scaled as needed to support each separate

microservice according to its needs.

The eShopOnContainers application stores the user's current shopping basket between
requests. This aspect is managed by the Basket microservice that stores the data in a
Redis cache. In development, this cache can be deployed in a container, while in
production it can utilize Azure Cache for Redis. Azure Cache for Redis is a fully managed
service offering high performance and reliability without the need to deploy and
manage Redis instances or containers on your own.

The Locations microservice uses a MongoDB NoSQL database for its persistence. During
development, the database can be deployed in its own container, while in production
the service can leverage Azure Cosmos DB's API for MongoDB. One of the benefits of
Azure Cosmos DB is its ability to leverage multiple different communication protocols,
including a SQL API and common NoSQL APIs including MongoDB, Cassandra, Gremlin,
and Azure Table Storage. Azure Cosmos DB offers a fully managed and globally
distributed database as a service that can scale to meet the needs of the services that

use it.

Distributed data in cloud-native applications is covered in more detail in chapter 5.

Event Bus

The application uses events to communicate changes between different services. This
functionality can be implemented with various implementations, and locally the
eShopOnContainers application uses RabbitMQ @'. When hosted in Azure, the
application would leverage Azure Service Bus for its messaging. Azure Service Bus is a
fully managed integration message broker that allows applications and services to
communicate with one another in a decoupled, reliable, asynchronous manner. Azure
Service Bus supports individual queues as well as separate topics to support publisher-
subscriber scenarios. The eShopOnContainers application would leverage topics with
Azure Service Bus to support distributing messages from one microservice to any other
microservice that needed to react to a given message.

https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb-introduction
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://learn.microsoft.com/en-us/azure/service-bus/

Resiliency

Once deployed to production, the eShopOnContainers application would be able to
take advantage of several Azure services available to improve its resiliency. The
application publishes health checks, which can be integrated with Application Insights to
provide reporting and alerts based on the app's availability. Azure resources also
provide diagnostic logs that can be used to identify and correct bugs and performance
issues. Resource logs provide detailed information on when and how different Azure
resources are used by the application. You'll learn more about cloud-native resiliency

features in chapter 6.

Deploying eShopOnContainers to Azure

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

The eShopOnContainers application can be deployed to various Azure platforms. The
recommended approach is to deploy the application to Azure Kubernetes Services
(AKS). Helm, a Kubernetes deployment tool, is available to reduce deployment
complexity. Optionally, developers may implement Azure Dev Spaces for Kubernetes to

streamline their development process.

Azure Kubernetes Service

To host eShop in AKS, the first step is to create an AKS cluster. To do so, you might use
the Azure portal, which will walk you through the required steps. You could also create a
cluster from the Azure CLI, taking care to enable Role-Based Access Control (RBAC) and
application routing. The eShopOnContainers' documentation details the steps for
creating your own AKS cluster. Once created, you can access and manage the cluster
from the Kubernetes dashboard.

You can now deploy the eShop application to the cluster using Helm.

Deploying to Azure Kubernetes Service using
Helm

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Helm is an application package manager tool that works directly with Kubernetes. It
helps you define, install, and upgrade Kubernetes applications. While simple apps can
be deployed to AKS with custom CLI scripts or simple deployment files, complex apps

can contain many Kubernetes objects and benefit from Helm.

Using Helm, applications include text-based configuration files, called Helm charts,
which declaratively describe the application and configuration in Helm packages. Charts
use standard YAML-formatted files to describe a related set of Kubernetes resources.
They're versioned alongside the application code they describe. Helm Charts range from

simple to complex depending on the requirements of the installation they describe.

Helm is composed of a command-line client tool, which consumes helm charts and
launches commands to a server component named, Tiller. Tiller communicates with the
Kubernetes API to ensure the correct provisioning of your containerized workloads.
Helm is maintained by the Cloud-native Computing Foundation.

The following yaml file presents a Helm template:

YAML

apiVersion: vl
kind: Service
metadata:
name: {{ .Values.app.svc.marketing }}
labels:
app: {{ template "marketing-api.name" . }}
chart: {{ template "marketing-api.chart" . }}
release: {{ .Release.Name }}
heritage: {{ .Release.Service }}
spec:
type: {{ .Values.service.type }}
ports:
- port: {{ .Values.service.port }}
targetPort: http
protocol: TCP
name: http
selector:
app: {{ template "marketing-api.name" . }}
release: {{ .Release.Name }}

Note how the template describes a dynamic set of key/value pairs. When the template is
invoked, values that enclosed in curly braces are pulled in from other yaml-based
configuration files.

You'll find the eShopOnContainers helm charts in the /k8s/helm folder. Figure 2-6 shows
how the different components of the application are organized into a folder structure

used by helm to define and managed deployments.

Branch: dev~ | eShopOnContainers / k8s / helm /

a mvelosop Add option to use local images for kBs deployment

B apigwmm

| apigwms

B apigwwm

B apigwws

i basket-api

i basket-data

i catalog-api

i eshop-common

i identity-api

i istio

i keystore-data

B |ocations-api

B marketing-api

i mobileshoppingagg
i nosgl-data

i ordering-api

i ordering-backgroundtasks
i ordering-signalrhub
B payment-api

i rabbitmg

i sql-data

i webhooks-api

i webhooks-web

i webmvc

i webshoppingagg
i webspa

i webstatus

devspaces scripts

devspaces scripts

devspaces scripts

devspaces scripts

Handle empty Application Insights instrumentation key
helm charts mostly finished

Handle empty Application Insights instrumentation key
helm charts mostly finished

Handle empty Application Insights instrumentation key
Fixed documentation errors

helm charts mostly finished

Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
helm charts mostly finished

Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
helm charts mostly finished

helm charts mostly finished

Handle empty Application Insights instrumentation key

webhooks flow finished. Only missing bug in api that don't show the h...

Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key
Handle empty Application Insights instrumentation key

Fix WebStatus HealthChecks replacement

Figure 2-6. The eShopOnContainers helm folder.

Upload files | Find file | History

Latest commit faa7s4s 13 days ago

6 months ago
6 months ago
6 months ago
& manths ago
3 months ago

last year
2 months ago

last year
3 months ago
6 months ago

last year
3 months ago
2 months ago
3 months ago

last year
3 months ago
3 months ago
2 months ago
3 months ago

last year

last year
3 months ago
7 months ago
2 months ago
3 months ago
3 months ago

20 days ago

Each individual component is installed using a helm install command. eShop includes

a "deploy all" script that loops through and installs the components using their

respective helm charts. The result is a repeatable process, versioned with the application

in source control, that anyone on the team can deploy to an AKS cluster with a one-line

script command.

Note that version 3 of Helm officially removes the need for the Tiller server

component. More information on this enhancement can be found here'.

Azure Functions and Logic Apps (Serverless)

The eShopOnContainers sample includes support for tracking online marketing

campaigns. An Azure Function is used to track marketing campaign details for a given

campaign ID. Rather than creating a full microservice, a single Azure Function is simpler

https://medium.com/better-programming/why-is-tiller-missing-in-helm-3-2347c446714
https://medium.com/better-programming/why-is-tiller-missing-in-helm-3-2347c446714

and sufficient. Azure Functions have a simple build and deployment model, especially
when configured to run in Kubernetes. Deploying the function is scripted using Azure
Resource Manager (ARM) templates and the Azure CLI. This campaign service isn't
customer-facing and invokes a single operation, making it a great candidate for Azure
Functions. The function requires minimal configuration, including a database connection
string data and image base URI settings. You configure Azure Functions in the Azure
portal.

Centralized configuration

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

J

Unlike a monolithic app in which everything runs within a single instance, a cloud-native
application consists of independent services distributed across virtual machines,
containers, and geographic regions. Managing configuration settings for dozens of
interdependent services can be challenging. Duplicate copies of configuration settings
across different locations are error prone and difficult to manage. Centralized

configuration is a critical requirement for distributed cloud-native applications.

As discussed in Chapter 1, the Twelve-Factor App recommendations require strict
separation between code and configuration. Configuration must be stored externally
from the application and read-in as needed. Storing configuration values as constants or
literal values in code is a violation. The same configuration values are often be used by
many services in the same application. Additionally, we must support the same values
across multiple environments, such as deyv, testing, and production. The best practice is

store them in a centralized configuration store.

The Azure cloud presents several great options.

Azure App Configuration

Azure App Configuration is a fully managed Azure service that stores non-secret
configuration settings in a secure, centralized location. Stored values can be shared

https://learn.microsoft.com/en-us/azure/azure-app-configuration/overview
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

among multiple services and applications.
The service is simple to use and provides several benefits:

e Flexible key/value representations and mappings
e Tagging with Azure labels

e Dedicated Ul for management

e Encryption of sensitive information

e Querying and batch retrieval

Azure App Configuration maintains changes made to key-value settings for seven days.
The point-in-time snapshot feature enables you to reconstruct the history of a setting
and even rollback for a failed deployment.

App Configuration automatically caches each setting to avoid excessive calls to the
configuration store. The refresh operation waits until the cached value of a setting
expires to update that setting, even when its value changes in the configuration store.

The default cache expiration time is 30 seconds. You can override the expiration time.

App Configuration encrypts all configuration values in transit and at rest. Key names and

labels are used as indexes for retrieving configuration data and aren't encrypted.

Although App Configuration provides hardened security, Azure Key Vault is still the best
place for storing application secrets. Key Vault provides hardware-level encryption,
granular access policies, and management operations such as certificate rotation. You
can create App Configuration values that reference secrets stored in a Key Vault.

Azure Key Vault

Key Vault is a managed service for securely storing and accessing secrets. A secret is
anything that you want to tightly control access to, such as API keys, passwords, or

certificates. A vault is a logical group of secrets.

Key Vault greatly reduces the chances that secrets may be accidentally leaked. When
using Key Vault, application developers no longer need to store security information in
their application. This practice eliminates the need to store this information inside your
code. For example, an application may need to connect to a database. Instead of storing

the connection string in the app's code, you can store it securely in Key Vault.

Your applications can securely access the information they need by using URIs. These
URIs allow the applications to retrieve specific versions of a secret. There's no need to
write custom code to protect any of the secret information stored in Key Vault.

Access to Key Vault requires proper caller authentication and authorization. Typically,
each cloud-native microservice uses a Clientld/ClientSecret combination. It's important
to keep these credentials outside source control. A best practice is to set them in the
application's environment. Direct access to Key Vault from AKS can be achieved using
Key Vault FlexVolume .

Configuration in eShop

The eShopOnContainers application includes local application settings files with each
microservice. These files are checked into source control, but don't include production
secrets such as connection strings or API keys. In production, individual settings may be
overwritten with per-service environment variables. Injecting secrets in environment
variables is a common practice for hosted applications, but doesn't provide a central
configuration store. To support centralized management of configuration settings, each
microservice includes a setting to toggle between its use of local settings or Azure Key
Vault settings.

References

e The eShopOnContainers Architecture @

e Orchestrating microservices and multi-container applications for high scalability
and availability

e Azure APl Management

e Azure SQL Database Overview

e Azure Cache for Redis&

e Azure Cosmos DB's APl for MongoDB

e Azure Service Bus

e Azure Monitor overview

e eShopOnContainers: Create Kubernetes cluster in AKS &

e eShopOnContainers: Azure Dev Spaces™

e Azure Dev Spaces

https://github.com/Azure/kubernetes-keyvault-flexvol
https://github.com/Azure/kubernetes-keyvault-flexvol
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Architecture
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Architecture
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/scalable-available-multi-container-microservice-applications
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/scalable-available-multi-container-microservice-applications
https://learn.microsoft.com/en-us/azure/api-management/api-management-key-concepts
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-technical-overview
https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cache/
https://learn.microsoft.com/en-us/azure/cosmos-db/mongodb-introduction
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/azure-monitor/overview
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)#create-kubernetes-cluster-in-aks
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Deploy-to-Azure-Kubernetes-Service-(AKS)#create-kubernetes-cluster-in-aks
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Azure-Dev-Spaces
https://github.com/dotnet-architecture/eShopOnContainers/wiki/Azure-Dev-Spaces
https://learn.microsoft.com/en-us/azure/dev-spaces/about

Scaling cloud-native applications

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

One of the most-often touted advantages of moving to a cloud hosting environment is
scalability. Scalability, or the ability for an application to accept additional user load
without compromising performance for each user. It's most often achieved by breaking
up an application into small pieces that can each be given whatever resources they

require. Cloud vendors enable massive scalability anytime and anywhere in the world.

In this chapter, we discuss technologies that enable cloud-native applications to scale to
meet user demand. These technologies include:

e Containers
e Orchestrators

e Serverless computing

Previous m

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Leveraging containers and orchestrators

Article « 02/16/2023

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Containers and orchestrators are designed to solve problems common to monolithic
deployment approaches.

Challenges with monolithic deployments

Traditionally, most applications have been deployed as a single unit. Such applications
are referred to as a monolith. This general approach of deploying applications as single
units even if they're composed of multiple modules or assemblies is known as
monolithic architecture, as shown in Figure 3-1.

Client app

-—-—-—--

Monolithic server process Database

E

-

o

/ Modules \ I
|

I

H--

|
|
| Identity Catalog |
|
|
|
i

|
|
|
i - - ,—l—> Relational |
|
|
|

|
|
|
|

, Ordering Basket I
|
|
[—=

database

|
|

| N '
|

' Marketing Location J

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Figure 3-1. Monolithic architecture.

Although they have the benefit of simplicity, monolithic architectures face many
challenges:

Deployment

Additionally, they require a restart of the application, which may temporarily impact
availability if zero-downtime techniques are not applied while deploying.

Scaling

A monolithic application is hosted entirely on a single machine instance, often requiring
high-capability hardware. If any part of the monolith requires scaling, another copy of
the entire application must be deployed to another machine. With a monolith, you can't
scale application components individually - it's all or nothing. Scaling components that
don't require scaling results in inefficient and costly resource usage.

Environment

Monolithic applications are typically deployed to a hosting environment with a pre-
installed operating system, runtime, and library dependencies. This environment may
not match that upon which the application was developed or tested. Inconsistencies
across application environments are a common source of problems for monolithic

deployments.

Coupling

A monolithic application is likely to experience high coupling across its functional
components. Without hard boundaries, system changes often result in unintended and
costly side effects. New features/fixes become tricky, time-consuming, and expensive to
implement. Updates require extensive testing. Coupling also makes it difficult to refactor
components or swap in alternative implementations. Even when constructed with a strict
separation of concerns, architectural erosion sets in as the monolithic code base

deteriorates with never-ending "special cases."

Platform lock-in

A monolithic application is constructed with a single technology stack. While offering
uniformity, this commitment can become a barrier to innovation. New features and

components will be built using the application's current stack - even when more modern
technologies may be a better choice. A longer-term risk is your technology stack
becoming outdated and obsolete. Rearchitecting an entire application to a new, more

modern platform is at best expensive and risky.

What are the benefits of containers and
orchestrators?

We introduced containers in Chapter 1. We highlighted how the Cloud Native
Computing Foundation (CNCF) ranks containerization as the first step in their Cloud-
Native Trail Map &' - guidance for enterprises beginning their cloud-native journey. In
this section, we discuss the benefits of containers.

Docker is the most popular container management platform. It works with containers on
both Linux or Windows. Containers provide separate but reproducible application
environments that run the same way on any system. This aspect makes them perfect for
developing and hosting cloud-native services. Containers are isolated from one another.
Two containers on the same host hardware can have different versions of software,
without causing conflicts.

Containers are defined by simple text-based files that become project artifacts and are
checked into source control. While full servers and virtual machines require manual
effort to update, containers are easily version-controlled. Apps built to run in containers
can be developed, tested, and deployed using automated tools as part of a build

pipeline.

Containers are immutable. Once you define a container, you can recreate and run it
exactly the same way. This immutability lends itself to component-based design. If some
parts of an application evolve differently than others, why redeploy the entire app when
you can just deploy the parts that change most frequently? Different features and cross-
cutting concerns of an app can be broken up into separate units. Figure 3-2 shows how
a monolithic app can take advantage of containers and microservices by delegating
certain features or functionality. The remaining functionality in the app itself has also
been containerized.

https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png
https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png
https://raw.githubusercontent.com/cncf/trailmap/master/CNCF_TrailMap_latest.png

Client apps I Docker Host BB | Identity microservice (5TS+users)

(" Identity microservice (STS:users) !
I [Identi
Mobile app - | ! I
| =iy | [m___i .
: —] ' [. = l
I ‘ | (" Catalog microservice K - I
| T —
I I : —Eol—@ S)
N e S C
| | I le' Ordering microservice \\I z |
Traditional Web app | om
I I _______ 3 b . S Felation = |5 § I
I - - 2 I :f WebAppi % i dﬂsrng'ﬁ;/’- :a‘.abasz i % a I
<J—— - | =3
I n ‘ ‘ I I i : EP I\“ (GracePeriod worker svc A ﬁ g
=3 ,_::::__:::::::__:::::::__::::\ ']
o = e - g i Basket microservice [4 = |
i “HTML i | N : B =
< | R =
[SPuwebawe I i F’ﬁ e /% |
__h ru I
i | | ! Marketing microservice Y /E I
|
! - 0SOL |
I I I i m'—":ﬂ? Database : I
| | e
I I \“—:::::::::::::::::::::::::::
I I | [Locations microservice ! / |
| - RSy
| : —— e — e . I
I .\ ___ 7
I | | L _— _— | | | _— _— _— _— | | | | _— _— _— _— | | J

Figure 3-2. Decomposing a monolithic app to embrace microservices.

Each cloud-native service is built and deployed in a separate container. Each can update
as needed. Individual services can be hosted on nodes with resources appropriate to
each service. The environment each service runs in is immutable, shared across dey, test,
and production environments, and easily versioned. Coupling between different areas of
the application occurs explicitly as calls or messages between services, not compile-time
dependencies within the monolith. You can also choose the technology that best suites

a given capability without requiring changes to the rest of the app.

Containerized services require automated management. It wouldn't be feasible to
manually administer a large set of independently deployed containers. For example,

consider the following tasks:

e How will container instances be provisioned across a cluster of many machines?
e Once deployed, how will containers discover and communicate with each other?
e How can containers scale in or out on-demand?

e How do you monitor the health of each container?

e How do you protect a container against hardware and software failures?

e How do upgrade containers for a live application with zero downtime?

Container orchestrators address and automate these and other concerns.

In the cloud-native eco-system, Kubernetes has become the de facto container
orchestrator. It's an open-source platform managed by the Cloud Native Computing
Foundation (CNCF). Kubernetes automates the deployment, scaling, and operational

concerns of containerized workloads across a machine cluster. However, installing and

managing Kubernetes is notoriously complex.

A much better approach is to leverage Kubernetes as a managed service from a cloud
vendor. The Azure cloud features a fully managed Kubernetes platform entitled Azure
Kubernetes Service (AKS) . AKS abstracts the complexity and operational overhead of
managing Kubernetes. You consume Kubernetes as a cloud service; Microsoft takes
responsibility for managing and supporting it. AKS also tightly integrates with other
Azure services and dev tools.

AKS is a cluster-based technology. A pool of federated virtual machines, or nodes, is
deployed to the Azure cloud. Together they form a highly available environment, or
cluster. The cluster appears as a seamless, single entity to your cloud-native application.
Under the hood, AKS deploys your containerized services across these nodes following a
predefined strategy that evenly distributes the load.

What are the scaling benefits?

Services built on containers can leverage scaling benefits provided by orchestration
tools like Kubernetes. By design containers only know about themselves. Once you have
multiple containers that need to work together, you should organize them at a higher
level. Organizing large numbers of containers and their shared dependencies, such as
network configuration, is where orchestration tools come in to save the day! Kubernetes
creates an abstraction layer over groups of containers and organizes them into pods.
Pods run on worker machines referred to as nodes. This organized structure is referred
to as a cluster. Figure 3-3 shows the different components of a Kubernetes cluster.

Kubernetes Kubernetes Master

&

Azure

P Kubernetes Etcd Store | | API Server| | Scheduler

Service

Il

AVA

RO
p
il

waw

™
/
™
/

kubelet proxy kubelet proxy

Figure 3-3. Kubernetes cluster components.

https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/

Scaling containerized workloads is a key feature of container orchestrators. AKS
supports automatic scaling across two dimensions: Container instances and compute
nodes. Together they give AKS the ability to quickly and efficiently respond to spikes in

demand and add additional resources. We discuss scaling in AKS later in this chapter.

Declarative versus imperative

Kubernetes supports both declarative and imperative configuration. The imperative
approach involves running various commands that tell Kubernetes what to do each step
of the way. Run this image. Delete this pod. Expose this port. With the declarative
approach, you create a configuration file, called a manifest, to describe what you want
instead of what to do. Kubernetes reads the manifest and transforms your desired end
state into actual end state.

Imperative commands are great for learning and interactive experimentation. However,
you'll want to declaratively create Kubernetes manifest files to embrace an infrastructure
as code approach, providing for reliable and repeatable deployments. The manifest file
becomes a project artifact and is used in your CI/CD pipeline for automating Kubernetes
deployments.

If you've already configured your cluster using imperative commands, you can export a
declarative manifest by using kubectl get svc SERVICENAME -o yaml > service.yaml.

This command produces a manifest similar to one shown below:

YAML

apiVersion: vl
kind: Service
metadata:
creationTimestamp: "2019-09-13T13:58:47Z"
labels:
component: apiserver
provider: kubernetes
name: kubernetes
namespace: default
resourceVersion: "153"
selflLink: /api/vl/namespaces/default/services/kubernetes
uid: 9blfac62-d62e-11e9-8968-00155d38010d
spec:
clusterIP: 10.96.0.1
ports:
- name: https
port: 443
protocol: TCP
targetPort: 6443
sessionAffinity: None
type: ClusterIP

status:
loadBalancer: {}

When using declarative configuration, you can preview the changes that will be made
before committing them by using kubectl diff -f FOLDERNAME against the folder where
your configuration files are located. Once you're sure you want to apply the changes,
run kubectl apply -f FOLDERNAME.Add -R to recursively process a folder hierarchy.

You can also use declarative configuration with other Kubernetes features, one of which
being deployments. Declarative deployments help manage releases, updates, and
scaling. They instruct the Kubernetes deployment controller on how to deploy new
changes, scale out load, or roll back to a previous revision. If a cluster is unstable, a
declarative deployment will automatically return the cluster back to a desired state. For
example, if a node should crash, the deployment mechanism will redeploy a

replacement to achieve your desired state

Using declarative configuration allows infrastructure to be represented as code that can
be checked in and versioned alongside the application code. It provides improved
change control and better support for continuous deployment using a build and deploy
pipeline.

What scenarios are ideal for containers and
orchestrators?

The following scenarios are ideal for using containers and orchestrators.

Applications requiring high uptime and scalability

Individual applications that have high uptime and scalability requirements are ideal
candidates for cloud-native architectures using microservices, containers, and
orchestrators. They can be developed in containers, tested across versioned
environments, and deployed into production with zero downtime. The use of
Kubernetes clusters ensures such apps can also scale on demand and recover
automatically from node failures.

Large numbers of applications

Organizations that deploy and maintain large numbers of applications benefit from
containers and orchestrators. The up front effort of setting up containerized

environments and Kubernetes clusters is primarily a fixed cost. Deploying, maintaining,

and updating individual applications has a cost that varies with the number of
applications. Beyond a few applications, the complexity of maintaining custom
applications manually exceeds the cost of implementing a solution using containers and

orchestrators.

When should you avoid using containers and
orchestrators?

If you're unable to build your application following the Twelve-Factor App principles,
you should consider avoiding containers and orchestrators. In these cases, consider a
VM-based hosting platform, or possibly some hybrid system. With it, you can always
spin off certain pieces of functionality into separate containers or even serverless

functions.

Development resources

This section shows a short list of development resources that may help you get started
using containers and orchestrators for your next application. If you're looking for
guidance on how to design your cloud-native microservices architecture app, read this
book's companion, .NET Microservices: Architecture for Containerized .NET
Applications .

Local Kubernetes Development

Kubernetes deployments provide great value in production environments, but can also
run locally on your development machine. While you may work on individual
microservices independently, there may be times when you'll need to run the entire
system locally - just as it will run when deployed to production. There are several tools
that can help: Minikube and Docker Desktop. Visual Studio also provides tooling for

Docker development.

Minikube

What is Minikube? The Minikube project says "Minikube implements a local Kubernetes
cluster on macQOS, Linux, and Windows." Its primary goals are "to be the best tool for
local Kubernetes application development and to support all Kubernetes features that
fit." Installing Minikube is separate from Docker, but Minikube supports different
hypervisors than Docker Desktop supports. The following Kubernetes features are
currently supported by Minikube:

https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

e DNS

e NodePorts

e ConfigMaps and secrets

e Dashboards

e Container runtimes: Docker, rkt, CRI-O, and containerd
e Enabling Container Network Interface (CNI)

e Ingress

After installing Minikube, you can quickly start using it by running the minikube start

command, which downloads an image and start the local Kubernetes cluster. Once the
cluster is started, you interact with it using the standard Kubernetes kubectl commands.

Docker Desktop

You can also work with Kubernetes directly from Docker Desktop on Windows. It is your
only option if you're using Windows Containers, and is a great choice for non-Windows
containers as well. Figure 3-4 shows how to enable local Kubernetes support when
running Docker Desktop.

@ docker - e B O robveuor
Settings X

= General Kubernetes

v1.21.3
I® Resources
@ Docker Engine Enable Kubernetes
Starta Kubernetes single-node cluster when starting Docker Desktop.
A& Experimental Features
2 [0 show system containers (advanced)
Kubernetes Show Kubernetes internal containers when UEi\'g Daocker commands.
d Kubernetes res urces will be deleted.
Cancel Apply & Restart
|&

Figure 3-4. Configuring Kubernetes in Docker Desktop.

Docker Desktop is the most popular tool for configuring and running containerized
apps locally. When you work with Docker Desktop, you can develop locally against the
exact same set of Docker container images that you'll deploy to production. Docker
Desktop is designed to "build, test, and ship" containerized apps locally. It supports both
Linux and Windows containers. Once you push your images to an image registry, like
Azure Container Registry or Docker Hub, AKS can pull and deploy them to production.

Visual Studio Docker Tooling

Visual Studio supports Docker development for web-based applications. When you
create a new ASP.NET Core application, you have an option to configure it with Docker

support, as shown in Figure 3-5.

Additional information

ASP.NET Core Web API c# Linux macOs Windows Cloud Service Web
Framework (i)

.MET 6.0 (Long-term support)
Authentication type @)

None

Configure for HTTPS (O

Docker 0S (@)

Linux

|| Use controllers (uncheck to use minimal APIs) @®

+| Enable OpenAP| support (
P PP

Create

Figure 3-5. Visual Studio Enable Docker Support

When this option is selected, the project is created with a Dockerfile in its root, which
can be used to build and host the app in a Docker container. An example Dockerfile is

shown in Figure 3-6.

Dockerfile

FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base
WORKDIR /app

EXPOSE 860

EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:7.0 AS build

WORKDIR /src

COPY ["eShopWeb/eShopWeb.csproj", "eShopWeb/"]

RUN dotnet restore "eShopWeb/eShopWeb.csproj"

COPY .

WORKDIR "/src/eShopWeb"

RUN dotnet build "eShopWeb.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "eShopWeb.csproj" -c Release -o /app/publish

FROM base AS final

WORKDIR /app

COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "eShopWeb.d11"]

Figure 3-6. Visual Studio generated Dockerfile

Once support is added, you can run your application in a Docker container in Visual
Studio. Figure 3-7 shows the different run options available from a new ASP.NET Core

project created with Docker support added.

Debug =~ Any CPU

P Docker

api_samnple_app

IS Express

Docker

W5L

Web Browser (Microsoft Edge)
Script Debugging (Disabled)
Browse With...

api-sample-app Debug Properties

Figure 3-7. Visual Studio Docker Run Options

Also, at any time you can add Docker support to an existing ASP.NET Core application.
From the Visual Studio Solution Explorer, right-click on the project and select Add >

Docker Support, as shown in Figure 3-8.

5 Build
Rebuild

Clean

e and Code Cleanup

Shift+Alt+A

Full Path
er in File Explorer
Shift+Alt+C

A Properties Alt+Enter

Figure 3-8. Adding Docker support to Visual Studio

Visual Studio Code Docker Tooling

There are many extensions available for Visual Studio Code that support Docker

development.

Microsoft provides the Docker for Visual Studio Code extension &'. This extension
simplifies the process of adding container support to applications. It scaffolds required
files, builds Docker images, and enables you to debug your app inside a container. The
extension features a visual explorer that makes it easy to take actions on containers and
images such as start, stop, inspect, remove, and more. The extension also supports
Docker Compose enabling you to manage multiple running containers as a single unit.

https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-docker

Leveraging serverless functions

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

In the spectrum from managing physical machines to leveraging cloud capabilities,
serverless lives at the extreme end. Your only responsibility is your code, and you only
pay when your code runs. Azure Functions provides a way to build serverless capabilities
into your cloud-native applications.

What is serverless?

Serverless is a relatively new service model of cloud computing. It doesn't mean that
servers are optional - your code still runs on a server somewhere. The distinction is that
the application team no longer concerns itself with managing server infrastructure.
Instead, the cloud vendor own this responsibility. The development team increases its

productivity by delivering business solutions to customers, not plumbing.

Serverless computing uses event-triggered stateless containers to host your services.
They can scale out and in to meet demand as-needed. Serverless platforms like Azure
Functions have tight integration with other Azure services like queues, events, and
storage.

What challenges are solved by serverless?

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Serverless platforms address many time-consuming and expensive concerns:

e Purchasing machines and software licenses

e Housing, securing, configuring, and maintaining the machines and their
networking, power, and A/C requirements

e Patching and upgrading operating systems and software

e Configuring web servers or machine services to host application software

e Configuring application software within its platform

Many companies allocate large budgets to support hardware infrastructure concerns.
Moving to the cloud can help reduce these costs; shifting applications to serverless can
help eliminate them.

What is the difference between a microservice
and a serverless function?

Typically, a microservice encapsulates a business capability, such as a shopping cart for
an online eCommerce site. It exposes multiple operations that enable a user to manage
their shopping experience. A function, however, is a small, lightweight block of code that
executes a single-purpose operation in response to an event. Microservices are typically
constructed to respond to requests, often from an interface. Requests can be HTTP Rest-
or gRPC-based. Serverless services respond to events. Its event-driven architecture is

ideal for processing short-running, background tasks.

What scenarios are appropriate for serverless?

Serverless exposes individual short-running functions that are invoked in response to a
trigger. This makes them ideal for processing background tasks.

An application might need to send an email as a step in a workflow. Instead of sending
the notification as part of a microservice request, place the message details onto a
queue. An Azure Function can dequeue the message and asynchronously send the
email. Doing so could improve the performance and scalability of the microservice.
Queue-based load leveling can be implemented to avoid bottlenecks related to sending
the emails. Additionally, this stand-alone service could be reused as a utility across many
different applications.

Asynchronous messaging from queues and topics is a common pattern to trigger
serverless functions. However, Azure Functions can be triggered by other events, such as
changes to Azure Blob Storage. A service that supports image uploads could have an

Azure Function responsible for optimizing the image size. The function could be

https://learn.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling

triggered directly by inserts into Azure Blob Storage, keeping complexity out of the

microservice operations.

Many services have long-running processes as part of their workflows. Often these tasks
are done as part of the user's interaction with the application. These tasks can force the
user to wait, negatively impacting their experience. Serverless computing provides a
great way to move slower tasks outside of the user interaction loop. These tasks can
scale with demand without requiring the entire application to scale.

When should you avoid serverless?

Serverless solutions provision and scale on demand. When a new instance is invoked,
cold starts are a common issue. A cold start is the period of time it takes to provision
this instance. Normally, this delay might be a few seconds, but can be longer depending
on various factors. Once provisioned, a single instance is kept alive as long as it receives
periodic requests. But, if a service is called less frequently, Azure may remove it from
memory and require a cold start when reinvoked. Cold starts are also required when a
function scales out to a new instance.

Figure 3-9 shows a cold-start pattern. Note the extra steps required when the app is

cold.

When App is Cold

Azure allocates Worker : Functions
S Functions ;
unspecialized becomes) loaded into Code runs
e runtime resets
server specialized memory

Files mounted
to worker

Function.json
files read

Extensions
loaded

App settings
applied

When App is Warm

Code runs

Figure 3-9. Cold start versus warm start.

To avoid cold starts entirely, you might switch from a consumption plan to a dedicated
plan®'. You can also configure one or more pre-warmed instances with the premium
plan upgrade. In these cases, when you need to add another instance, it's already up
and ready to go. These options can help mitigate the cold start issue associated with

serverless computing.

https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan#pre-warmed-instances

Cloud providers bill for serverless based on compute execution time and consumed
memory. Long running operations or high memory consumption workloads aren't
always the best candidates for serverless. Serverless functions favor small chunks of
work that can complete quickly. Most serverless platforms require individual functions to
complete within a few minutes. Azure Functions defaults to a 5-minute time-out
duration, which can be configured up to 10 minutes. The Azure Functions premium plan
can mitigate this issue as well, defaulting time-outs to 30 minutes with an unbounded
higher limit that can be configured. Compute time isn't calendar time. More advanced
functions using the Azure Durable Functions framework may pause execution over a
course of several days. The billing is based on actual execution time - when the function

wakes up and resumes processing.

Finally, leveraging Azure Functions for application tasks adds complexity. It's wise to first
architect your application with a modular, loosely coupled design. Then, identify if there

are benefits serverless would offer that justify the additional complexity.

Previous m

https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp

Combining containers and serverless
approaches

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Cloud-native applications typically implement services leveraging containers and
orchestration. There are often opportunities to expose some of the application's services
as Azure Functions. However, with a cloud-native app deployed to Kubernetes, it would
be nice to leverage Azure Functions within this same toolset. Fortunately, you can wrap
Azure Functions inside Docker containers and deploy them using the same processes

and tools as the rest of your Kubernetes-based app.

When does it make sense to use containers
with serverless?

Your Azure Function has no knowledge of the platform on which it's deployed. For some
scenarios, you may have specific requirements and need to customize the environment
on which your function code will run. You'll need a custom image that supports
dependencies or a configuration not supported by the default image. In these cases, it

makes sense to deploy your function in a custom Docker container.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

When should you avoid using containers with
Azure Functions?

If you want to use consumption billing, you can't run your function in a container.
What's more, if you deploy your function to a Kubernetes cluster, you'll no longer
benefit from the built-in scaling provided by Azure Functions. You'll need to use

Kubernetes' scaling features, described earlier in this chapter.

How to combine serverless and Docker
containers

To wrap an Azure Function in a Docker container, install the Azure Functions Core

Tools# and then run the following command:

Console

func init ProjectName --worker-runtime dotnet --docker

When the project is created, it will include a Dockerfile and the worker runtime

configured to dotnet. Now, you can create and test your function locally. Build and run
it using the docker build and docker run commands. For detailed steps to get started
building Azure Functions with Docker support, see the Create a function on Linux using

a custom image tutorial.

How to combine serverless and Kubernetes
with KEDA

In this chapter, you've seen that the Azure Functions' platform automatically scales out
to meet demand. When deploying containerized functions to AKS, however, you lose
the built-in scaling functionality. To the rescue comes Kubernetes-based Event Driven
(KEDA). It enables fine-grained autoscaling for event-driven Kubernetes workloads,

including containerized functions.

KEDA provides event-driven scaling functionality to the Functions' runtime in a Docker
container. KEDA can scale from zero instances (when no events are occurring) out to n
instances, based on load. It enables autoscaling by exposing custom metrics to the
Kubernetes autoscaler (Horizontal Pod Autoscaler). Using Functions containers with
KEDA makes it possible to replicate serverless function capabilities in any Kubernetes

cluster.

https://github.com/Azure/azure-functions-core-tools
https://github.com/Azure/azure-functions-core-tools
https://github.com/Azure/azure-functions-core-tools
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image
https://learn.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://learn.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda

It's worth noting that the KEDA project is now managed by the Cloud Native Computing
Foundation (CNCF).

Deploying containers in Azure

Article « 12/14/2023

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

We've discussed containers in this chapter and in chapter 1. We've seen that containers
provide many benefits to cloud-native applications, including portability. In the Azure
cloud, you can deploy the same containerized services across staging and production
environments. Azure provides several options for hosting these containerized workloads:

e Azure Kubernetes Services (AKS)
e Azure Container Instance (ACI)
e Azure Web Apps for Containers

Azure Container Registry

When containerizing a microservice, you first build a container "image." The image is a
binary representation of the service code, dependencies, and runtime. While you can
manually create an image using the Docker Build command from the Docker API, a

better approach is to create it as part of an automated build process.

Once created, container images are stored in container registries. They enable you to
build, store, and manage container images. There are many registries available, both
public and private. Azure Container Registry (ACR) is a fully managed container registry

service in the Azure cloud. It persists your images inside the Azure network, reducing the

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

time to deploy them to Azure container hosts. You can also secure them using the same

security and identity procedures that you use for other Azure resources.

You create an Azure Container Registry using the Azure portal, Azure CLI, or PowerShell
tools. Creating a registry in Azure is simple. It requires an Azure subscription, resource
group, and a unique name. Figure 3-10 shows the basic options for creating a registry,

which will be hosted at registryname.azurecr.io.

Create container registry O X

m

* Registry nam

| specificregistryname W

[=1)
4
[

m
m
o

Subscription

Visual Studio Ultimate with M5DN w
* Resource group

(Mew) myResourceGroup w
Create new
* Locatio

West US A
* Admin user @
—
*SKU o
| Basic s

Automation options

Figure 3-10. Create container registry

Once you've created the registry, you'll need to authenticate with it before you can use
it. Typically, you'll log into the registry using the Azure CLI command:

Azure CLI

az acr login --name *registryname*

Once authenticated, you can use docker commands to push container images to it.
Before you can do so, however, you must tag your image with the fully qualified name
(URL) of your ACR login server. It will have the format registryname.azurecr.io.

Console

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-azure-cli
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-powershell
https://learn.microsoft.com/en-us/azure/container-registry/container-registry-get-started-powershell

docker tag mycontainer myregistry.azurecr.io/mycontainer:vil

After you've tagged the image, you use the docker push command to push the image

to your ACR instance.
Console

docker push myregistry.azurecr.io/mycontainer:vl

After you push an image to the registry, it's a good idea to remove the image from your

local Docker environment, using this command:

Console

docker rmi myregistry.azurecr.io/mycontainer:vl

As a best practice, you shouldn't manually push images to a container registry. Instead,
use a build pipeline defined in a tool like GitHub or Azure DevOps. Learn more in the
Cloud-Native DevOps chapter.

ACR Tasks

ACR Tasks is a set of features available from the Azure Container Registry. It extends
your inner-loop development cycle by building and managing container images in the
Azure cloud. Instead of invoking a docker build and docker push locally on your

development machine, they're automatically handled by ACR Tasks in the cloud.

The following AZ CLI command both builds a container image and pushes it to ACR:

Azure CLI

create a container registry
az acr create --resource-group myResourceGroup --name myContainerRegistry008
--sku Basic

build container image in ACR and push it into your container registry
az acr build --image sample/hello-world:vl --registry
myContainerRegistry@08 --file Dockerfile .

As you can see from the previous command block, there's no need to install Docker
Desktop on your development machine. Additionally, you can configure ACR Task

triggers to rebuild containers images on both source code and base image updates.

https://learn.microsoft.com/en-us/azure/container-registry/container-registry-tasks-overview

Azure Kubernetes Service

We discussed Azure Kubernetes Service (AKS) at length in this chapter. We've seen that
it's the de facto container orchestrator managing containerized cloud-native

applications.

Once you deploy an image to a registry, such as ACR, you can configure AKS to
automatically pull and deploy it. With a CI/CD pipeline in place, you might configure a
canary release @ strategy to minimize the risk involved when rapidly deploying updates.
The new version of the app is initially configured in production with no traffic routed to
it. Then, the system will route a small percentage of users to the newly deployed version.
As the team gains confidence in the new version, it can roll out more instances and

retire the old. AKS easily supports this style of deployment.

As with most resources in Azure, you can create an Azure Kubernetes Service cluster
using the portal, command-line, or automation tools like Helm or Terraform. To get

started with a new cluster, you need to provide the following information:

e Azure subscription

e Resource group

e Kubernetes cluster name
e Region

e Kubernetes version

e DNS name prefix

e Node size

e Node count

This information is sufficient to get started. As part of the creation process in the Azure

portal, you can also configure options for the following features of your cluster:

e Scale

e Authentication
e Networking

e Monitoring

e Tags

This quickstart walks through deploying an AKS cluster using the Azure portal.

Azure Bridge to Kubernetes

Cloud-native applications can grow large and complex, requiring significant compute

resources to run. In these scenarios, the entire application can't be hosted on a

https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://learn.microsoft.com/en-us/azure/aks/kubernetes-walkthrough-portal

development machine (especially a laptop). Azure Bridge to Kubernetes addresses the
shortcoming. It enables developers to work with a local version of their service while
hosting the entire application in an AKS development cluster.

When ready, developers test their changes locally while running against the full
application in the AKS cluster - without replicating dependencies. Under the hood, the
bridge merges code from the local machine with services in AKS. Developers can rapidly

iterate and debug code directly in Kubernetes using Visual Studio or Visual Studio Code.

Gabe Monroy, former VP of Product Management at Microsoft, describes it well:

Imagine you're a new employee trying to fix a bug in a complex microservices
application consisting of dozens of components, each with their own configuration
and backing services. To get started, you must configure your local development
environment so that it can mimic production including setting up your IDE, building
tool chain, containerized service dependencies, a local Kubernetes environment,
mocks for backing services, and more. With all the time involved setting up your
development environment, fixing that first bug could take days! Or you could just
use Bridge to Kubernetes and AKS.

Previous m

https://learn.microsoft.com/en-us/visualstudio/bridge/overview-bridge-to-kubernetes

Scaling containers and serverless
applications

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

There are two ways to scale an application: up or out. The former refers to adding
capacity to a single resource, while the latter refers to adding more resources to increase

capacity.

The simple solution: scaling up

Upgrading an existing host server with increased CPU, memory, disk 1/0 speed, and
network 1/0 speed is known as scaling up. Scaling up a cloud-native application involves
choosing more capable resources from the cloud vendor. For example, you can create a
new node pool with larger VMs in your Kubernetes cluster. Then, migrate your

containerized services to the new pool.

Serverless apps scale up by choosing the premium Functions plan or premium instance

sizes from a dedicated app service plan.

Scaling out cloud-native apps

Cloud-native applications often experience large fluctuations in demand and require
scale on a moment's notice. They favor scaling out. Scaling out is done horizontally by

https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

adding additional machines (called nodes) or application instances to an existing cluster.
In Kubernetes, you can scale manually by adjusting configuration settings for the app
(for example, scaling a node pool), or through autoscaling.

AKS clusters can autoscale in one of two ways:

First, the Horizontal Pod Autoscaler monitors resource demand and automatically scales
your POD replicas to meet it. When traffic increases, additional replicas are automatically
provisioned to scale out your services. Likewise, when demand decreases, they're
removed to scale-in your services. You define the metric on which to scale, for example,
CPU usage. You can also specify the minimum and maximum number of replicas to run.
AKS monitors that metric and scales accordingly.

Next, the AKS Cluster Autoscaler feature enables you to automatically scale compute
nodes across a Kubernetes cluster to meet demand. With it, you can automatically add
new VMs to the underlying Azure Virtual Machine Scale Set whenever more compute

capacity of is required. It also removes nodes when no longer required.

Figure 3-11 shows the relationship between these two scaling services.

- Y

Azure Kubernetes Service (AKS) cluster

E Cluster Autoscaler

MNode l | Nede l | MNode | Mode Mode
N Honzontal Pod Autoscaler B
l Scale out l
Pod Pod Pod Pod Pod
N -

Figure 3-11. Scaling out an App Service plan.

Working together, both ensure an optimal number of container instances and compute
nodes to support fluctuating demand. The horizontal pod autoscaler optimizes the
number of pods required. The cluster autoscaler optimizes the number of nodes

required.

Scaling Azure Functions

Azure Functions automatically scale out upon demand. Server resources are dynamically
allocated and removed based on the number of triggered events. You're only charged
for compute resources consumed when your functions run. Billing is based upon the

number of executions, execution time, and memory used.

https://learn.microsoft.com/en-us/azure/aks/use-multiple-node-pools#scale-a-node-pool-manually
https://learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-scale#autoscale-pods
https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler

While the default consumption plan provides an economical and scalable solution for
most apps, the premium option allows developers flexibility for custom Azure Functions
requirements. Upgrading to the premium plan provides control over instance sizes, pre-
warmed instances (to avoid cold start delays), and dedicated VMs.

Previous m

Other container deployment options

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Aside from Azure Kubernetes Service (AKS), you can also deploy containers to Azure
App Service for Containers and Azure Container Instances.

When does it make sense to deploy to App
Service for Containers?

Simple production applications that don't require orchestration are well suited to Azure

App Service for Containers.

How to deploy to App Service for Containers

To deploy to Azure App Service for Containers @, you'll need an Azure Container
Registry (ACR) instance and credentials to access it. Push your container image to the
ACR repository so that your Azure App Service can pull it when needed. Once complete,
you can configure the app for Continuous Deployment. Doing so will automatically

deploy updates whenever the image changes in ACR.

https://azure.microsoft.com/services/app-service/containers/
https://azure.microsoft.com/services/app-service/containers/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

When does it make sense to deploy to Azure
Container Instances?

Azure Container Instances (ACI) Z enables you to run Docker containers in a managed,
serverless cloud environment, without having to set up virtual machines or clusters. It's a
great solution for short-running workloads that can run in an isolated container.
Consider ACI for simple services, testing scenarios, task automation, and build jobs. ACI
spins-up a container instance, performs the task, and then spins it down.

How to deploy an app to Azure Container
Instances

To deploy to Azure Container Instances (ACI), you need an Azure Container Registry
(ACR) and credentials for accessing it. Once you push your container image to the
repository, it's available to pull into ACI. You can work with ACI using the Azure portal or
command-line interface. ACR provides tight integration with ACI. Figure 3-12 shows how
to push an individual container image to ACR.

& myregistry - Repositories

= log
aci-helloworld
-
M = Cas5s CO = Ll - 3
: Create webhook &
azure-vote-front
& Tag: Delete i
di Quick start Run instance I
Deploy to web app
Access key
E Locks
Automa p
Repositonies

& Webhooks

Replications (Preview)

New support request

Figure 3-12. Azure Container Registry Run Instance

https://azure.microsoft.com/services/container-instances/
https://azure.microsoft.com/services/container-instances/
https://learn.microsoft.com/en-us/azure/container-instances/

Creating an instance in ACl can be done quickly. Specify the image registry, Azure
resource group information, the amount of memory to allocate, and the port on which
to listen. This quickstart shows how to deploy a container instance to ACI using the

Azure portal.

Once the deployment completes, find the newly deployed container's IP address and

communicate with it over the port you specified.

Azure Container Instances offers the fastest way to run simple container workloads in
Azure. You don't need to configure an app service, orchestrator, or virtual machine. For
scenarios where you require full container orchestration, service discovery, automatic
scaling, or coordinated upgrades, we recommend Azure Kubernetes Service (AKS).

References

e What is Kubernetes? &

¢ Installing Kubernetes with Minikube &

e MiniKube vs Docker Desktop &

e Visual Studio Tools for Docker

e Understanding serverless cold start

e Pre-warmed Azure Functions instances

e Create a function on Linux using a custom image
e Run Azure Functions in a Docker Container @

e Create a function on Linux using a custom image
e Azure Functions with Kubernetes Event Driven Autoscaling
e Canary Release @

e Azure Dev Spaces with VS Code

e Azure Dev Spaces with Visual Studio

e AKS Multiple Node Pools

e AKS Cluster Autoscaler

e Tutorial: Scale applications in AKS

e Azure Functions scale and hosting

e Azure Container Instances Docs

e Deploy Container Instance from ACR

https://learn.microsoft.com/en-us/azure/container-instances/container-instances-quickstart-portal
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-quickstart-portal
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://blog.newrelic.com/engineering/what-is-kubernetes/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://medium.com/containers-101/local-kubernetes-for-windows-minikube-vs-docker-desktop-25a1c6d3b766
https://medium.com/containers-101/local-kubernetes-for-windows-minikube-vs-docker-desktop-25a1c6d3b766
https://learn.microsoft.com/en-us/dotnet/standard/containerized-lifecycle-architecture/design-develop-containerized-apps/visual-studio-tools-for-docker
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://azure.microsoft.com/blog/understanding-serverless-cold-start/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-premium-plan#pre-warmed-instances
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image
https://markheath.net/post/azure-functions-docker
https://markheath.net/post/azure-functions-docker
https://learn.microsoft.com/en-us/azure/azure-functions/functions-create-function-linux-custom-image
https://learn.microsoft.com/en-us/azure/azure-functions/functions-kubernetes-keda
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html
https://learn.microsoft.com/en-us/azure/dev-spaces/quickstart-netcore
https://learn.microsoft.com/en-us/azure/dev-spaces/quickstart-netcore-visualstudio
https://learn.microsoft.com/en-us/azure/aks/use-multiple-node-pools
https://learn.microsoft.com/en-us/azure/aks/cluster-autoscaler
https://learn.microsoft.com/en-us/azure/aks/tutorial-kubernetes-scale
https://learn.microsoft.com/en-us/azure/azure-functions/functions-scale
https://learn.microsoft.com/en-us/azure/container-instances/
https://learn.microsoft.com/en-us/azure/container-instances/container-instances-using-azure-container-registry#deploy-with-azure-portal

Cloud-native communication patterns

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

When constructing a cloud-native system, communication becomes a significant design
decision. How does a front-end client application communicate with a back-end
microservice? How do back-end microservices communicate with each other? What are
the principles, patterns, and best practices to consider when implementing

communication in cloud-native applications?

Communication considerations

In a monolithic application, communication is straightforward. The code modules
execute together in the same executable space (process) on a server. This approach can
have performance advantages as everything runs together in shared memory, but
results in tightly coupled code that becomes difficult to maintain, evolve, and scale.

Cloud-native systems implement a microservice-based architecture with many small,
independent microservices. Each microservice executes in a separate process and

typically runs inside a container that is deployed to a cluster.

A cluster groups a pool of virtual machines together to form a highly available
environment. They're managed with an orchestration tool, which is responsible for

deploying and managing the containerized microservices. Figure 4-1 shows a

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Kubernetes @ cluster deployed into the Azure cloud with the fully managed Azure

Kubernetes Services.

.E Master Node

Kubernetes e
- Scheduler 10
Proncy !

- [Etc.

- [Node |
S B

e

E .
nﬁo@

Kubernetes
cluster

A

[_tooe _
LO)|
KX

»
O]
O
xex

(g]
[Node

Figure 4-1. A Kubernetes cluster in Azure

Across the cluster, microservices communicate with each other through APIs and

messaging technologies.

While they provide many benefits, microservices are no free lunch. Local in-process
method calls between components are now replaced with network calls. Each
microservice must communicate over a network protocol, which adds complexity to
your system:

e Network congestion, latency, and transient faults are a constant concern.

e Resiliency (that is, retrying failed requests) is essential.

e Some calls must be idempotent as to keep consistent state.

e Each microservice must authenticate and authorize calls.

e Each message must be serialized and then deserialized - which can be expensive.

e Message encryption/decryption becomes important.

The book .NET Microservices: Architecture for Containerized .NET Applications &,
available for free from Microsoft, provides an in-depth coverage of communication
patterns for microservice applications. In this chapter, we provide a high-level overview
of these patterns along with implementation options available in the Azure cloud.

https://kubernetes.io/
https://kubernetes.io/
https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/azure/aks/intro-kubernetes
https://learn.microsoft.com/en-us/azure/architecture/microservices/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/compare-messaging-services
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook

In this chapter, we'll first address communication between front-end applications and
back-end microservices. We'll then look at back-end microservices communicate with
each other. We'll explore the up and gRPC communication technology. Finally, we'll look
new innovative communication patterns using service mesh technology. We'll also see
how the Azure cloud provides different kinds of backing services to support cloud-native

communication.

Front-end client communication

Article « 04/07/2022

e a

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

In a cloud-native system, front-end clients (mobile, web, and desktop applications)
require a communication channel to interact with independent back-end microservices.

What are the options?

To keep things simple, a front-end client could directly communicate with the back-end

microservices, shown in Figure 4-2.

N

I cloud !
P S (“Microservice 1) I
/ Clientapps I I Web AP | I
i i . kx|
| Mobil . N container _____s I
| oDlile !
| |
| app o JR— — [
! | Microservice 2
! | Web AP ! |
| |
| o u | I
: I _____container /
| . !
'\ b (Microservice 3) I
AN S I Web AP) I
I I - e I
I '\ container /' I
L]

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Figure 4-2. Direct client to service communication

With this approach, each microservice has a public endpoint that is accessible by front-
end clients. In a production environment, you'd place a load balancer in front of the

microservices, routing traffic proportionately.

While simple to implement, direct client communication would be acceptable only for
simple microservice applications. This pattern tightly couples front-end clients to core

back-end services, opening the door for many problems, including:

e Client susceptibility to back-end service refactoring.

e A wider attack surface as core back-end services are directly exposed.

e Duplication of cross-cutting concerns across each microservice.

e Overly complex client code - clients must keep track of multiple endpoints and
handle failures in a resilient way.

Instead, a widely accepted cloud design pattern is to implement an APl Gateway Service
between the front-end applications and back-end services. The pattern is shown in
Figure 4-3.

Mobile app [= o mm Emm Em e Em e e Em e e o o e e

s T T T T T T T T T T N
! Microservice 1)
l Web API |
|
|
.

\ container /
~

\

Microservice 2
Web API

Kx

\ container

Web API

)

container

S ——

(
|
|
|
|
|
|
|

—————————————

\
Microservice 3

Traditional web app

(\

|
: Web AP : |

| |

Browser I kel
I N container) I

Figure 4-3. API gateway pattern

In the previous figure, note how the API Gateway service abstracts the back-end core
microservices. Implemented as a web API, it acts as a reverse proxy, routing incoming
traffic to the internal microservices.

The gateway insulates the client from internal service partitioning and refactoring. If you
change a back-end service, you accommodate for it in the gateway without breaking the
client. It's also your first line of defense for cross-cutting concerns, such as identity,

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/direct-client-to-microservice-communication-versus-the-api-gateway-pattern

caching, resiliency, metering, and throttling. Many of these cross-cutting concerns can
be off-loaded from the back-end core services to the gateway, simplifying the back-end
services.

Care must be taken to keep the API Gateway simple and fast. Typically, business logic is
kept out of the gateway. A complex gateway risks becoming a bottleneck and eventually
a monolith itself. Larger systems often expose multiple API Gateways segmented by
client type (mobile, web, desktop) or back-end functionality. The Backend for Frontends
pattern provides direction for implementing multiple gateways. The pattern is shown in
Figure 4-4.

| Cloud
————————— (" API gateway Microcervica 1°
{ Y g Yy Microservice 1
I Web app l l i |r Webapl |
—

| - | Kol |
N . / _ Webapp _ container |

“ AP gateway (Wiicrosarvica 2

Web AP

—_—— = =

lf Microservice 3
‘Web APl

A\
|
|
|

| |
|

!

|‘. container

Figure 4-4. Backend for frontend pattern

Note in the previous figure how incoming traffic is sent to a specific APl gateway -
based upon client type: web, mobile, or desktop app. This approach makes sense as the
capabilities of each device differ significantly across form factor, performance, and
display limitations. Typically mobile applications expose less functionality than a browser
or desktop applications. Each gateway can be optimized to match the capabilities and

functionality of the corresponding device.

Simple Gateways

To start, you could build your own API Gateway service. A quick search of GitHub will

provide many examples.

https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends

For simple .NET cloud-native applications, you might consider the Ocelot Gateway .
Open source and created for .NET microservices, it's lightweight, fast, scalable. Like any
API Gateway, its primary functionality is to forward incoming HTTP requests to
downstream services. Additionally, it supports a wide variety of capabilities that are
configurable in a .NET middleware pipeline.

YARP ' (Yet Another Reverse proxy) is another open source reverse proxy led by a group
of Microsoft product teams. Downloadable as a NuGet package, YARP plugs into the
ASP.NET framework as middleware and is highly customizable. You'll find YARP well-

documented & with various usage examples.

For enterprise cloud-native applications, there are several managed Azure services that

can help jump-start your efforts.

Azure Application Gateway

For simple gateway requirements, you may consider Azure Application Gateway.
Available as an Azure PaaS service ?, it includes basic gateway features such as URL
routing, SSL termination, and a Web Application Firewall. The service supports Layer-7
load balancing @ capabilities. With Layer 7, you can route requests based on the actual
content of an HTTP message, not just low-level TCP network packets.

Throughout this book, we evangelize hosting cloud-native systems in Kubernetes . A
container orchestrator, Kubernetes automates the deployment, scaling, and operational
concerns of containerized workloads. Azure Application Gateway can be configured as

an API gateway for Azure Kubernetes Service @ cluster.

The Application Gateway Ingress Controller enables Azure Application Gateway to

work directly with Azure Kubernetes Service @'. Figure 4.5 shows the architecture.

r
Cloud i ——————————————— - -
| | Azure Kubernetes e —————— < 1]
| @ /
1 Service Cluster | Microservice 1! 1
I | Web API I : I
|
| 'l m 1l
_________ __ container_ /1
I f Azure "\ 1]
—_—— ——— ~ I
|

Microservice 2 | | I
Web AP

(
s,

i
|
| N
— | JSON I | : I
Application | ._ Controller __ceniner Ly |
Front-End Gateway J e |
Client e St [Microservice 3 | | |
| Web API | 1
-
el
[

https://github.com/ThreeMammals/Ocelot
https://github.com/ThreeMammals/Ocelot
https://github.com/microsoft/reverse-proxy
https://github.com/microsoft/reverse-proxy
https://microsoft.github.io/reverse-proxy/articles/getting-started.html
https://microsoft.github.io/reverse-proxy/articles/getting-started.html
https://microsoft.github.io/reverse-proxy/articles/getting-started.html
https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://azure.microsoft.com/overview/what-is-paas/
https://azure.microsoft.com/overview/what-is-paas/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.nginx.com/resources/glossary/layer-7-load-balancing/
https://www.infoworld.com/article/3268073/what-is-kubernetes-your-next-application-platform.html
https://www.infoworld.com/article/3268073/what-is-kubernetes-your-next-application-platform.html
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://azure.microsoft.com/services/kubernetes-service/
https://azure.microsoft.com/services/kubernetes-service/

Figure 4-5. Application Gateway Ingress Controller

Kubernetes includes a built-in feature that supports HTTP (Level 7) load balancing,
called Ingress . Ingress defines a set of rules for how microservice instances inside AKS
can be exposed to the outside world. In the previous image, the ingress controller
interprets the ingress rules configured for the cluster and automatically configures the
Azure Application Gateway. Based on those rules, the Application Gateway routes traffic
to microservices running inside AKS. The ingress controller listens for changes to ingress
rules and makes the appropriate changes to the Azure Application Gateway.

Azure APl Management

For moderate to large-scale cloud-native systems, you may consider Azure API
Management®. It's a cloud-based service that not only solves your APl Gateway needs,
but provides a full-featured developer and administrative experience. APl Management

is shown in Figure 4-6.

I cloud
@ I L " e i
[Microservice |
° I I eb AP I
s O |
Developers Developer portal | m |
| ___Comane __
AP| Gatew o
Applications I e [Microservice \i
I VEb A7) ! Data Center
P | & - em
. . = I___EGE‘"_'E___JI I
I Publisher portal I
Administrators I
Azure APl Management I
L _—— _—— L} I I _—— _—— L} I I _——

Figure 4-6. Azure APl Management

To start, APl Management exposes a gateway server that allows controlled access to
back-end services based upon configurable rules and policies. These services can be in
the Azure cloud, your on-prem data center, or other public clouds. API keys and JWT

tokens determine who can do what. All traffic is logged for analytical purposes.

For developers, APl Management offers a developer portal that provides access to

services, documentation, and sample code for invoking them. Developers can use

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/api-management/

Swagger/Open API to inspect service endpoints and analyze their usage. The service

works across the major development platforms: .NET, Java, Golang, and more.

The publisher portal exposes a management dashboard where administrators expose
APIs and manage their behavior. Service access can be granted, service health
monitored, and service telemetry gathered. Administrators apply policies to each
endpoint to affect behavior. Policies are pre-built statements that execute sequentially
for each service call. Policies are configured for an inbound call, outbound call, or
invoked upon an error. Policies can be applied at different service scopes as to enable
deterministic ordering when combining policies. The product ships with a large number
of prebuilt policies.

Here are examples of how policies can affect the behavior of your cloud-native services:

e Restrict service access.

e Enforce authentication.

e Throttle calls from a single source, if necessary.

e Enable caching.

e Block calls from specific IP addresses.

e Control the flow of the service.

e Convert requests from SOAP to REST or between different data formats, such as
from XML to JSON.

Azure APl Management can expose back-end services that are hosted anywhere — in the
cloud or your data center. For legacy services that you may expose in your cloud-native
systems, it supports both REST and SOAP APIs. Even other Azure services can be
exposed through APl Management. You could place a managed API on top of an Azure
backing service like Azure Service Bus @ or Azure Logic Apps®. Azure APl Management
doesn't include built-in load-balancing support and should be used in conjunction with

a load-balancing service.

Azure APl Management is available across four different tiers

Developer
e Basic
Standard

Premium

The Developer tier is meant for non-production workloads and evaluation. The other
tiers offer progressively more power, features, and higher service level agreements
(SLAs). The Premium tier provides Azure Virtual Network and multi-region support. All
tiers have a fixed price per hour.

https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-policies
https://learn.microsoft.com/en-us/azure/api-management/api-management-policies
https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/service-bus/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/pricing/details/api-management/
https://azure.microsoft.com/pricing/details/api-management/
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/api-management/api-management-howto-deploy-multi-region

The Azure cloud also offers a serverless tier @ for Azure APl Management. Referred to as
the consumption pricing tier, the service is a variant of APl Management designed
around the serverless computing model. Unlike the "pre-allocated" pricing tiers
previously shown, the consumption tier provides instant provisioning and pay-per-
action pricing.

It enables API Gateway features for the following use cases:

e Microservices implemented using serverless technologies such as Azure Functions
and Azure Logic Apps¥'.

e Azure backing service resources such as Service Bus queues and topics, Azure
storage, and others.

e Microservices where traffic has occasional large spikes but remains low most the

time.

The consumption tier uses the same underlying service APl Management components,
but employs an entirely different architecture based on dynamically allocated resources.
It aligns perfectly with the serverless computing model:

¢ No infrastructure to manage.
¢ No idle capacity.

e High-availability.

e Automatic scaling.

e Cost is based on actual usage.

The new consumption tier is a great choice for cloud-native systems that expose
serverless resources as APIs.

Real-time communication

Real-time, or push, communication is another option for front-end applications that
communicate with back-end cloud-native systems over HTTP. Applications, such as
financial-tickers, online education, gaming, and job-progress updates, require
instantaneous, real-time responses from the back-end. With normal HTTP
communication, there's no way for the client to know when new data is available. The
client must continually poll or send requests to the server. With real-time

communication, the server can push new data to the client at any time.

Real-time systems are often characterized by high-frequency data flows and large
numbers of concurrent client connections. Manually implementing real-time
connectivity can quickly become complex, requiring non-trivial infrastructure to ensure

scalability and reliable messaging to connected clients. You could find yourself

https://azure.microsoft.com/blog/announcing-azure-api-management-for-serverless-architectures/
https://azure.microsoft.com/blog/announcing-azure-api-management-for-serverless-architectures/
https://learn.microsoft.com/en-us/azure/azure-functions/functions-overview
https://azure.microsoft.com/services/logic-apps/
https://azure.microsoft.com/services/logic-apps/

managing an instance of Azure Redis Cache and a set of load balancers configured with

sticky sessions for client affinity.

Azure SignalR Service is a fully managed Azure service that simplifies real-time

communication for your cloud-native applications. Technical implementation details like

capacity provisioning, scaling, and persistent connections are abstracted away. They're

handled for you with a 99.9% service-level agreement. You focus on application features,

not infrastructure plumbing.

Once enabled, a cloud-based HTTP service can push content updates directly to

connected clients, including browser, mobile and desktop applications. Clients are
updated without the need to poll the server. Azure SignalR abstracts the transport
technologies that create real-time connectivity, including WebSockets, Server-Side

Events, and Long Polling. Developers focus on sending messages to all or specific

subsets of connected clients.

Figure 4-7 shows a set of HTTP Clients connecting to a Cloud-native application with

Azure SignalR enabled.

~

/ Client1SPAWebapp

|
|
|
|
|
|
|
|
|
|
/

I %

I 0, o -
I l = [SignalR Service Hub
|

| Persistent ' [
by - Service !
i JSON I ConmecﬂonE ,%age i
|

) [

,’/ Client 3 SPA Web app

|
|
|
|
|
|
|
|
|
|
\

\
N

Figure 4-7. Azure SignalR

| Cloud

L_____________

Another advantage of Azure SignalR Service comes with implementing Serverless cloud-

native services. Perhaps your code is executed on demand with Azure Functions triggers.

This scenario can be tricky because your code doesn't maintain long connections with

clients. Azure SignalR Service can handle this situation since the service already manages

connections for you.

https://azure.microsoft.com/services/signalr-service/
https://azure.microsoft.com/services/signalr-service/

Azure SignalR Service closely integrates with other Azure services, such as Azure SQL

Database, Service Bus, or Redis Cache, opening up many possibilities for your cloud-
native applications.

Service-to-service communication

Article < 11/01/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Moving from the front-end client, we now address back-end microservices
communicate with each other.

When constructing a cloud-native application, you'll want to be sensitive to how back-
end services communicate with each other. Ideally, the less inter-service communication,
the better. However, avoidance isn't always possible as back-end services often rely on

one another to complete an operation.

There are several widely accepted approaches to implementing cross-service
communication. The type of communication interaction will often determine the best

approach.
Consider the following interaction types:

e Query —when a calling microservice requires a response from a called
microservice, such as, "Hey, give me the buyer information for a given customer

Id."

e Command — when the calling microservice needs another microservice to execute

an action but doesn't require a response, such as, "Hey, just ship this order."

e Fvent — when a microservice, called the publisher, raises an event that state has
changed or an action has occurred. Other microservices, called subscribers, who

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

are interested, can react to the event appropriately. The publisher and the

subscribers aren't aware of each other.

Microservice systems typically use a combination of these interaction types when
executing operations that require cross-service interaction. Let's take a close look at
each and how you might implement them.

Queries

Many times, one microservice might need to query another, requiring an immediate
response to complete an operation. A shopping basket microservice may need product
information and a price to add an item to its basket. There are many approaches for
implementing query operations.

Request/Response Messaging

One option for implementing this scenario is for the calling back-end microservice to
make direct HTTP requests to the microservices it needs to query, shown in Figure 4-8.

o 3
Lookup
Pricing

f |
' |
|
B O .
|
A9 ,I

JavaScript/Angularjs

Microservice

| Cloud (Product Catalog | I
|
I - ey | I
'\ Microservice |
Mobile app 1 F - - I
I Product |
I Lookup I
I I(F E;I_G_a;e;r;y_ x} Ad do { Shopping Basket} I
| |
> A D |
SPA web app | '\ m | ftem | Microservice P, I
|
|
|
|
|

Figure 4-8. Direct HTTP communication

While direct HTTP calls between microservices are relatively simple to implement, care
should be taken to minimize this practice. To start, these calls are always synchronous
and will block the operation until a result is returned or the request times outs. What
were once self-contained, independent services, able to evolve independently and
deploy frequently, now become coupled to each other. As coupling among
microservices increase, their architectural benefits diminish.

Executing an infrequent request that makes a single direct HTTP call to another
microservice might be acceptable for some systems. However, high-volume calls that
invoke direct HTTP calls to multiple microservices aren't advisable. They can increase
latency and negatively impact the performance, scalability, and availability of your
system. Even worse, a long series of direct HTTP communication can lead to deep and

complex chains of synchronous microservices calls, shown in Figure 4-9:

Cloud ~——————— ~ o ————— 1
| [API Gateway } o | Shopping Basket,
|
|
I\ |

|
_________) | Microservice |
l Product Lookup 9

—_————

Product Catalog }

Mobile app

|
) . |
Microservice |

—_———— O —

Javabcript/Angular)s

Figure 4-9. Chaining HTTP queries

You can certainly imagine the risk in the design shown in the previous image. What
happens if Step #3 fails? Or Step #8 fails? How do you recover? What if Step #6 is slow
because the underlying service is busy? How do you continue? Even if all works
correctly, think of the latency this call would incur, which is the sum of the latency of
each step.

The large degree of coupling in the previous image suggests the services weren't

optimally modeled. It would behoove the team to revisit their design.

Materialized View pattern

A popular option for removing microservice coupling is the Materialized View pattern.
With this pattern, a microservice stores its own local, denormalized copy of data that's
owned by other services. Instead of the Shopping Basket microservice querying the
Product Catalog and Pricing microservices, it maintains its own local copy of that data.
This pattern eliminates unnecessary coupling and improves reliability and response time.
The entire operation executes inside a single process. We explore this pattern and other
data concerns in Chapter 5.

https://learn.microsoft.com/en-us/azure/architecture/patterns/materialized-view

Service Aggregator Pattern

Another option for eliminating microservice-to-microservice coupling is an Aggregator

microservice 2, shown in purple in Figure 4-10.

Checkout
Aggregator

.

—————————— ~

Shopping Basket!

JSON I u :
| Add Item __I\Il_itirt_)s_eiv_ic_e_/l
SPA web app I~ ____ 1 ___
— | { API Gateway
==t e " hrng
Jav;écript/Ang;;Iarjs | tem———m - i
/

Figure 4-10. Aggregator microservice

The pattern isolates an operation that makes calls to multiple back-end microservices,
centralizing its logic into a specialized microservice. The purple checkout aggregator
microservice in the previous figure orchestrates the workflow for the Checkout
operation. It includes calls to several back-end microservices in a sequenced order. Data
from the workflow is aggregated and returned to the caller. While it still implements
direct HTTP calls, the aggregator microservice reduces direct dependencies among

back-end microservices.

Request/Reply Pattern

Another approach for decoupling synchronous HTTP messages is a Request-Reply
Pattern@, which uses queuing communication. Communication using a queue is always
a one-way channel, with a producer sending the message and consumer receiving it.
With this pattern, both a request queue and response queue are implemented, shown in
Figure 4-11.

https://devblogs.microsoft.com/cesardelatorre/designing-and-implementing-api-gateways-with-ocelot-in-a-microservices-and-container-based-architecture/
https://devblogs.microsoft.com/cesardelatorre/designing-and-implementing-api-gateways-with-ocelot-in-a-microservices-and-container-based-architecture/
https://devblogs.microsoft.com/cesardelatorre/designing-and-implementing-api-gateways-with-ocelot-in-a-microservices-and-container-based-architecture/
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/RequestReply.html

Price = $3.98

Correlation Id= xyz

: Cloud |
I Reguest Message I
—————————————————— Product Id = 557
I {/ ShoppingBasket Microservice \\ Gemalkiom HemE I
{ ABI Gt | Web API Service) I
| | API Gateway | : GetPrlOeMI _______ -
| Add Item Request essage . . \
I [] ecitem] (" Pricing ||
| Post I
| | E?E J : ! Request Queue | Microservice : I
AN
________ — | DB update | [
| | To—— O I
I : Database [m] GetPrice L Response Queue __ Senice _} |
AN Pt 9 Consumer |
I ______ p_r (;d_u_c;r ______ Request Message I
L |

Figure 4-11. Request-reply pattern

Here, the message producer creates a query-based message that contains a unique
correlation ID and places it into a request queue. The consuming service dequeues the
messages, processes it and places the response into the response queue with the same
correlation ID. The producer service dequeues the message, matches it with the
correlation ID and continues processing. We cover queues in detail in the next section.

Commands

Another type of communication interaction is a command. A microservice may need
another microservice to perform an action. The Ordering microservice may need the
Shipping microservice to create a shipment for an approved order. In Figure 4-12, one
microservice, called a Producer, sends a message to another microservice, the
Consumer, commanding it to do something.

I cloud

| rf’ Ordering Microservice \\1 rr’ Shipping Microservice h‘\ I
T T | '

I ir AP Gateway : : ‘Web AP . Ord I — : Service I I

| | Prepare ipOrder |

| RN [l_, o — - KX |
| | |

l Serdf’ b | : @ | schedute Shippin N

I ————————— I Get Order Data I Queue : pping I I
I I
I '1 Cache I '1 - Database }

M s _ /'! M e I

I Producer Consumer I

—_— _— —— —_— —_— —_— _— —— —_— —_— —_— _— —— —_— —_— —_— _— —— —_— —_— —_— _— —_— —_— l

Figure 4-12. Command interaction with a queue

Most often, the Producer doesn't require a response and can fire-and-forget the
message. If a reply is needed, the Consumer sends a separate message back to Producer
on another channel. A command message is best sent asynchronously with a message
queue. supported by a lightweight message broker. In the previous diagram, note how a

gueue separates and decouples both services.

As many message queues may dispatch the same message more than once, known as
at-least-once delivery, the consumer must be able to identify and handle these

scenarios correctly using the relevant idempotent message processing patterns.

A message queue is an intermediary construct through which a producer and consumer
pass a message. Queues implement an asynchronous, point-to-point messaging pattern.
The Producer knows where a command needs to be sent and routes appropriately. The
gueue guarantees that a message is processed by exactly one of the consumer instances
that are reading from the channel. In this scenario, either the producer or consumer
service can scale out without affecting the other. As well, technologies can be disparate
on each side, meaning that we might have a Java microservice calling a Golang @

microservice.

In chapter 1, we talked about backing services. Backing services are ancillary resources
upon which cloud-native systems depend. Message queues are backing services. The
Azure cloud supports two types of message queues that your cloud-native systems can
consume to implement command messaging: Azure Storage Queues and Azure Service
Bus Queues.

Azure Storage Queues

Azure storage queues offer a simple queueing infrastructure that is fast, affordable, and

backed by Azure storage accounts.

Azure Storage Queues feature a REST-based queuing mechanism with reliable and
persistent messaging. They provide a minimal feature set, but are inexpensive and store
millions of messages. Their capacity ranges up to 500 TB. A single message can be up to
64 KB in size.

You can access messages from anywhere in the world via authenticated calls using HTTP
or HTTPS. Storage queues can scale out to large numbers of concurrent clients to

handle traffic spikes.

That said, there are limitations with the service:

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/containers/aks-mission-critical/mission-critical-data-platform#idempotent-message-processing
https://golang.org/
https://golang.org/
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction

e Message order isn't guaranteed.
e A message can only persist for seven days before it's automatically removed.
e Support for state management, duplicate detection, or transactions isn't available.

Figure 4-13 shows the hierarchy of an Azure Storage Queue.

Message 1

Storage Account Message 2

Figure 4-13. Storage queue hierarchy

In the previous figure, note how storage queues store their messages in the underlying
Azure Storage account.

For developers, Microsoft provides several client and server-side libraries for Storage
gueue processing. Most major platforms are supported including .NET, Java, JavaScript,
Ruby, Python, and Go. Developers should never communicate directly with these
libraries. Doing so will tightly couple your microservice code to the Azure Storage
Queue service. It's a better practice to insulate the implementation details of the API.
Introduce an intermediation layer, or intermediate API, that exposes generic operations
and encapsulates the concrete library. This loose coupling enables you to swap out one
queuing service for another without having to make changes to the mainline service

code.

Azure Storage queues are an economical option to implement command messaging in
your cloud-native applications. Especially when a queue size will exceed 80 GB, or a
simple feature set is acceptable. You only pay for the storage of the messages; there are
no fixed hourly charges.

Azure Service Bus Queues

For more complex messaging requirements, consider Azure Service Bus queues.

Sitting atop a robust message infrastructure, Azure Service Bus supports a brokered
messaging model. Messages are reliably stored in a broker (the queue) until received by

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview

the consumer. The queue guarantees First-In/First-Out (FIFO) message delivery,

respecting the order in which messages were added to the queue.

The size of a message can be much larger, up to 256 KB. Messages are persisted in the
queue for an unlimited period of time. Service Bus supports not only HTTP-based calls,
but also provides full support for the AMQP protocol. AMQP is an open-standard across
vendors that supports a binary protocol and higher degrees of reliability.

Service Bus provides a rich set of features, including transaction support and a duplicate
detection feature. The queue guarantees "at most once delivery" per message. It
automatically discards a message that has already been sent. If a producer is in doubt, it
can resend the same message, and Service Bus guarantees that only one copy will be
processed. Duplicate detection frees you from having to build additional infrastructure
plumbing.

Two more enterprise features are partitioning and sessions. A conventional Service Bus
queue is handled by a single message broker and stored in a single message store. But,
Service Bus Partitioning spreads the queue across multiple message brokers and
message stores. The overall throughput is no longer limited by the performance of a
single message broker or messaging store. A temporary outage of a messaging store
doesn't render a partitioned queue unavailable.

Service Bus Sessions @ provide a way to group-related messages. Imagine a workflow
scenario where messages must be processed together and the operation completed at
the end. To take advantage, sessions must be explicitly enabled for the queue and each
related messaged must contain the same session ID.

However, there are some important caveats: Service Bus queues size is limited to 80 GB,
which is much smaller than what's available from store queues. Additionally, Service Bus
queues incur a base cost and charge per operation.

Figure 4-14 outlines the high-level architecture of a Service Bus queue.

Provider 1

M M M Consumer 2

Queue Consumer 3

Provider 2

Figure 4-14. Service Bus queue

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-amqp-overview
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-transactions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/duplicate-detection
https://learn.microsoft.com/en-us/azure/service-bus-messaging/duplicate-detection
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://codingcanvas.com/azure-service-bus-sessions/
https://codingcanvas.com/azure-service-bus-sessions/

In the previous figure, note the point-to-point relationship. Two instances of the same
provider are enqueuing messages into a single Service Bus queue. Each message is
consumed by only one of three consumer instances on the right. Next, we discuss how
to implement messaging where different consumers may all be interested the same
message.

Events

Message queuing is an effective way to implement communication where a producer
can asynchronously send a consumer a message. However, what happens when many
different consumers are interested in the same message? A dedicated message queue
for each consumer wouldn't scale well and would become difficult to manage.

To address this scenario, we move to the third type of message interaction, the event.
One microservice announces that an action had occurred. Other microservices, if
interested, react to the action, or event. This is also known as the event-driven

architectural style.

Eventing is a two-step process. For a given state change, a microservice publishes an
event to a message broker, making it available to any other interested microservice. The
interested microservice is notified by subscribing to the event in the message broker.

You use the Publish/Subscribe pattern to implement event-based communication.

Figure 4-15 shows a shopping basket microservice publishing an event with two other

microservices subscribing to it.

I Cloud |
————————————————— \
| |
|
|
I o
|
P R LT TN ! I
| /~ ShoppingBasket Microservice N i
U S e 1S Y
ir API Gateway : : o Veb AFI Service o | <] Checkout Event > Create Order I
| ! [ﬁ, | | Checkout = ! Event Bus o
| : | | comma nd Checkout Event : (Publish/Subscribe Channel) I
I l\ S EEE'EE_ & (Publish Action) | E Checkout Event > Adjust Inventory
! o DB update [l Event Bus Abstractions/Interface o ————— ——————— I
I : : { Inventory Microservice °,
!| Database | Event Bus Implementations : | I
! - |
I AN - Azure : n * i |
T T - RabbitM | Service | Senvice : |
I \\ Database J

Figure 4-15. Event-Driven messaging

Note the event bus component that sits in the middle of the communication channel. It's

a custom class that encapsulates the message broker and decouples it from the

https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/event-driven
https://learn.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/en-us/dotnet/standard/microservices-architecture/multi-container-microservice-net-applications/integration-event-based-microservice-communications

underlying application. The ordering and inventory microservices independently operate
the event with no knowledge of each other, nor the shopping basket microservice.
When the registered event is published to the event bus, they act upon it.

With eventing, we move from queuing technology to topics. A topic is similar to a
queue, but supports a one-to-many messaging pattern. One microservice publishes a
message. Multiple subscribing microservices can choose to receive and act upon that

message. Figure 4-16 shows a topic architecture.

e

Price Subscribers

Publisher 1

:; “LogRule” Info Subscriber

Publisher 2 Filtering Rules * g
|

Logging Subscription

n

Log Subscriber

Figure 4-16. Topic architecture

In the previous figure, publishers send messages to the topic. At the end, subscribers
receive messages from subscriptions. In the middle, the topic forwards messages to
subscriptions based on a set of rules, shown in dark blue boxes. Rules act as a filter that
forward specific messages to a subscription. Here, a "GetPrice" event would be sent to
the price and logging subscriptions as the logging subscription has chosen to receive all
messages. A "GetInformation" event would be sent to the information and logging
subscriptions.

The Azure cloud supports two different topic services: Azure Service Bus Topics and

Azure EventGrid.

Azure Service Bus Topics

Sitting on top of the same robust brokered message model of Azure Service Bus queues
are Azure Service Bus Topics. A topic can receive messages from multiple independent
publishers and send messages to up to 2,000 subscribers. Subscriptions can be
dynamically added or removed at run time without stopping the system or recreating

the topic.

Many advanced features from Azure Service Bus queues are also available for topics,
including Duplicate Detection and Transaction support. By default, Service Bus topics are

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dotnet-how-to-use-topics-subscriptions
https://learn.microsoft.com/en-us/azure/service-bus-messaging/duplicate-detection
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-transactions

handled by a single message broker and stored in a single message store. But, Service
Bus Partitioning scales a topic by spreading it across many message brokers and
message stores.

Scheduled Message Delivery tags a message with a specific time for processing. The
message won't appear in the topic before that time. Message Deferral enables you to
defer a retrieval of a message to a later time. Both are commonly used in workflow
processing scenarios where operations are processed in a particular order. You can
postpone processing of received messages until prior work has been completed.

Service Bus topics are a robust and proven technology for enabling publish/subscribe
communication in your cloud-native systems.

Azure Event Grid

While Azure Service Bus is a battle-tested messaging broker with a full set of enterprise
features, Azure Event Grid is the new kid on the block.

At first glance, Event Grid may look like just another topic-based messaging system.
However, it's different in many ways. Focused on event-driven workloads, it enables
real-time event processing, deep Azure integration, and an open-platform - all on
serverless infrastructure. It's designed for contemporary cloud-native and serverless
applications

As a centralized eventing backplane, or pipe, Event Grid reacts to events inside Azure

resources and from your own services.

Event notifications are published to an Event Grid Topic, which, in turn, routes each
event to a subscription. Subscribers map to subscriptions and consume the events. Like
Service Bus, Event Grid supports a filtered subscriber model where a subscription sets
rule for the events it wishes to receive. Event Grid provides fast throughput with a
guarantee of 10 million events per second enabling near real-time delivery - far more
than what Azure Service Bus can generate.

A sweet spot for Event Grid is its deep integration into the fabric of Azure infrastructure.
An Azure resource, such as Cosmos DB, can publish built-in events directly to other
interested Azure resources - without the need for custom code. Event Grid can publish
events from an Azure Subscription, Resource Group, or Service, giving developers fine-
grained control over the lifecycle of cloud resources. However, Event Grid isn't limited to
Azure. It's an open platform that can consume custom HTTP events published from
applications or third-party services and route events to external subscribers.

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-partitioning
https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-sequencing
https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-deferral
https://learn.microsoft.com/en-us/azure/event-grid/overview

When publishing and subscribing to native events from Azure resources, no coding is
required. With simple configuration, you can integrate events from one Azure resource
to another leveraging built-in plumbing for Topics and Subscriptions. Figure 4-17 shows

the anatomy of Event Grid.

Topics Event Subscriptions

) r—H

‘ Blob Su:rage @
Azure Functions (;)]
| Media Services E {
; LogicApps {5 \
Azure Subscriptions .C.; ‘: \
Azure Automation :‘;}'
‘\ Resource Groups [.'J ; 5% ‘
- WebHooks
Event Hubs p 4
Queue Storage .ﬁ
S Ad
‘ loT Hub —
- Hyl:rld Connections .ﬁ.
Service Bus ————— ,ﬂ.\
E Event Hubs '_T-'
i —_
Custom Topics)

Y
Y Event Handlers

L

| =] 3] L]

Event Sources

Figure 4-17. Event Grid anatomy

A major difference between EventGrid and Service Bus is the underlying message
exchange pattern.

Service Bus implements an older style pull model in which the downstream subscriber
actively polls the topic subscription for new messages. On the upside, this approach
gives the subscriber full control of the pace at which it processes messages. It controls
when and how many messages to process at any given time. Unread messages remain
in the subscription until processed. A significant shortcoming is the latency between the
time the event is generated and the polling operation that pulls that message to the
subscriber for processing. Also, the overhead of constant polling for the next event
consumes resources and money.

EventGrid, however, is different. It implements a push model in which events are sent to
the EventHandlers as received, giving near real-time event delivery. It also reduces cost
as the service is triggered only when it's needed to consume an event — not continually
as with polling. That said, an event handler must handle the incoming load and provide
throttling mechanisms to protect itself from becoming overwhelmed. Many Azure

services that consume these events, such as Azure Functions and Logic Apps provide

automatic autoscaling capabilities to handle increased loads.

Event Grid is a fully managed serverless cloud service. It dynamically scales based on
your traffic and charges you only for your actual usage, not pre-purchased capacity. The
first 100,000 operations per month are free — operations being defined as event ingress
(incoming event notifications), subscription delivery attempts, management calls, and
filtering by subject. With 99.99% availability, EventGrid guarantees the delivery of an
event within a 24-hour period, with built-in retry functionality for unsuccessful delivery.
Undelivered messages can be moved to a "dead-letter" queue for resolution. Unlike
Azure Service Bus, Event Grid is tuned for fast performance and doesn't support features

like ordered messaging, transactions, and sessions.

Streaming messages in the Azure cloud

Azure Service Bus and Event Grid provide great support for applications that expose
single, discrete events like a new document has been inserted into a Cosmos DB. But,
what if your cloud-native system needs to process a stream of related events? Event
streams are more complex. They're typically time-ordered, interrelated, and must be

processed as a group.

Azure Event Hub ' is a data streaming platform and event ingestion service that
collects, transforms, and stores events. It's fine-tuned to capture streaming data, such as
continuous event notifications emitted from a telemetry context. The service is highly
scalable and can store and process millions of events per second. Shown in Figure 4-18,
it's often a front door for an event pipeline, decoupling ingest stream from event
consumption.

Event
Producer

—
Event
el

Event
Consumer

Producer

Event Event
Producer Consumer
Hub © =

Figure 4-18. Azure Event Hub

Event Hub supports low latency and configurable time retention. Unlike queues and
topics, Event Hubs keep event data after it's been read by a consumer. This feature
enables other data analytic services, both internal and external, to replay the data for

https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/february/microsoft-azure-the-rise-of-event-stream-oriented-systems
https://learn.microsoft.com/en-us/archive/msdn-magazine/2015/february/microsoft-azure-the-rise-of-event-stream-oriented-systems
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/event-hubs/
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-about

further analysis. Events stored in event hub are only deleted upon expiration of the

retention period, which is one day by default, but configurable.

Event Hub supports common event publishing protocols including HTTPS and AMQP. It
also supports Kafka 1.0. Existing Kafka applications can communicate with Event Hub
using the Kafka protocol providing an alternative to managing large Kafka clusters.

Many open-source cloud-native systems embrace Kafka.

Event Hubs implements message streaming through a partitioned consumer model in
which each consumer only reads a specific subset, or partition, of the message stream.
This pattern enables tremendous horizontal scale for event processing and provides
other stream-focused features that are unavailable in queues and topics. A partition is
an ordered sequence of events that is held in an event hub. As newer events arrive,
they're added to the end of this sequence. Figure 4-19 shows partitioning in an Event
Hub.

Event Receivers

Consumer .
Event Producers Azure Event Hubs Group .
)~ partition =
A ||||||||||| Partition 2 .
AMQP
oo R
I~ Partition 4

Figure 4-19. Event Hub partitioning

Instead of reading from the same resource, each consumer group reads across a subset,

or partition, of the message stream.

For cloud-native applications that must stream large numbers of events, Azure Event

Hub can be a robust and affordable solution.

https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-for-kafka-ecosystem-overview
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-features

gRPC

Article « 12/19/2023

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

J

So far in this book, we've focused on REST-based communication. We've seen that REST
is a flexible architectural style that defines CRUD-based operations against entity
resources. Clients interact with resources across HTTP with a request/response
communication model. While REST is widely implemented, a newer communication
technology, gRPC, has gained tremendous momentum across the cloud-native

community.

What is gRPC?

gRPC is a modern, high-performance framework that evolves the age-old remote
procedure call (RPC) & protocol. At the application level, gRPC streamlines messaging
between clients and back-end services. Originating from Google, gRPC is open source
and part of the Cloud Native Computing Foundation (CNCF) & ecosystem of cloud-
native offerings. CNCF considers gRPC an incubating project . Incubating means end
users are using the technology in production applications, and the project has a healthy
number of contributors.

A typical gRPC client app will expose a local, in-process function that implements a
business operation. Under the covers, that local function invokes another function on a
remote machine. What appears to be a local call essentially becomes a transparent out-

https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call
https://www.cncf.io/
https://www.cncf.io/
https://github.com/cncf/toc/blob/main/process/graduation_criteria.md
https://github.com/cncf/toc/blob/main/process/graduation_criteria.md
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

of-process call to a remote service. The RPC plumbing abstracts the point-to-point

networking communication, serialization, and execution between computers.

In cloud-native applications, developers often work across programming languages,
frameworks, and technologies. This interoperability complicates message contracts and
the plumbing required for cross-platform communication. gRPC provides a "uniform
horizontal layer" that abstracts these concerns. Developers code in their native platform

focused on business functionality, while gRPC handles communication plumbing.

gRPC offers comprehensive support across most popular development stacks, including
Java, JavaScript, C#, Go, Swift, and NodelS.

gRPC Benefits

gRPC uses HTTP/2 for its transport protocol. While compatible with HTTP 1.1, HTTP/2
features many advanced capabilities:

¢ A binary framing protocol for data transport - unlike HTTP 1.1, which is text based.

e Multiplexing support for sending multiple parallel requests over the same
connection - HTTP 1.1 limits processing to one request/response message at a
time.

e Bidirectional full-duplex communication for sending both client requests and
server responses simultaneously.

e Built-in streaming enabling requests and responses to asynchronously stream large
data sets.

e Header compression that reduces network usage.

gRPC is lightweight and highly performant. It can be up to 8x faster than JSON
serialization with messages 60-80% smaller. In Microsoft Windows Communication
Foundation (WCF) parlance, gRPC performance exceeds the speed and efficiency of the
highly optimized NetTCP bindings. Unlike NetTCP, which favors the Microsoft stack,
gRPC is cross-platform.

Protocol Buffers

gRPC embraces an open-source technology called Protocol Buffers@'. They provide a
highly efficient and platform-neutral serialization format for serializing structured
messages that services send to each other. Using a cross-platform Interface Definition
Language (IDL), developers define a service contract for each microservice. The contract,
implemented as a text-based .proto file, describes the methods, inputs, and outputs for

https://learn.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://learn.microsoft.com/en-us/dotnet/framework/wcf/whats-wcf
https://learn.microsoft.com/en-us/dotnet/api/system.servicemodel.nettcpbinding?view=netframework-4.8&preserve-view=true
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

each service. The same contract file can be used for gRPC clients and services built on

different development platforms.

Using the proto file, the Protobuf compiler, protoc, generates both client and service

code for your target platform. The code includes the following components:

e Strongly typed objects, shared by the client and service, that represent the service
operations and data elements for a message.

e A strongly typed base class with the required network plumbing that the remote
gRPC service can inherit and extend.

e A client stub that contains the required plumbing to invoke the remote gRPC
service.

At run time, each message is serialized as a standard Protobuf representation and
exchanged between the client and remote service. Unlike JSON or XML, Protobuf
messages are serialized as compiled binary bytes.

gRPC support in .NET

gRPC is integrated into .NET Core 3.0 SDK and later. The following tools support it:

e Visual Studio 2022 with the ASP.NET and web development workload installed
e Visual Studio Code
e The dotnet CLI

The SDK includes tooling for endpoint routing, built-in loC, and logging. The open-
source Kestrel web server supports HTTP/2 connections. Figure 4-20 shows a Visual
Studio 2022 template that scaffolds a skeleton project for a gRPC service. Note how
.NET fully supports Windows, Linux, and macOS.

Create a new project

Recent project templates

ore ASPNET C
Esl ASPNETC

¥ Azure Functions

L

Alllanguages All platforms

Linux macOs Windows Cloud

Not finding what
Install more to

Figure 4-20. gRPC support in Visual Studio 2022

All project types

Web

Figure 4-21 shows the skeleton gRPC service generated from the built-in scaffolding

included in Visual Studio 2022.

Solution Explorer
=)

Search Solution arer (Ctrl+:)
B3 Solution 'GrpcServicel' (1 of 1 project)
4 &] GrpcServicel

ooy

w Connected Services

& Dependencies

a1 Properties
3 Protos

= greet.proto
B Services

CH Greetersenvice.cs

[t} appsettings.json
C# Program.cs

Figure 4-21. gRPC project in Visual Studio 2022

In the previous figure, note the proto description file and service code. As you'll see

shortly, Visual Studio generates additional configuration in both the Startup class and

underlying project file.

gRPC usage

Favor gRPC for the following scenarios:

e Synchronous backend microservice-to-microservice communication where an
immediate response is required to continue processing.

¢ Polyglot environments that need to support mixed programming platforms.

e Low latency and high throughput communication where performance is critical.

e Point-to-point real-time communication - gRPC can push messages in real time
without polling and has excellent support for bi-directional streaming.

e Network constrained environments — binary gRPC messages are always smaller
than an equivalent text-based JSON message.

At the time of this writing, gRPC is primarily used with backend services. Modern
browsers can't provide the level of HTTP/2 control required to support a front-end gRPC
client. That said, there's support for gRPC-Web with .NET &' that enables gRPC
communication from browser-based apps built with JavaScript or Blazor WebAssembly
technologies. gRPC-Web & enables an ASP.NET Core gRPC app to support gRPC
features in browser apps:

e Strongly typed, code-generated clients
e Compact Protobuf messages
e Server streaming

gRPC implementation

The microservice reference architecture, eShop on Containers &, from Microsoft, shows
how to implement gRPC services in .NET applications. Figure 4-22 presents the back-
end architecture.

https://devblogs.microsoft.com/aspnet/grpc-web-for-net-now-available/
https://devblogs.microsoft.com/aspnet/grpc-web-for-net-now-available/
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md
https://github.com/grpc/grpc/blob/master/doc/PROTOCOL-WEB.md
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers

/APl Gateways / BFF ~

"Shopping”
microservices

Mobile-Shopping
— !

Aggre gat e
I \
m ! iﬁ _l

S

Mobile-Marketing

Web-Shopping

I | “Marketing”
Aggregator i microservices
| O |
L Web- keti ng :'i +_l.,]

Figure 4-22. Backend architecture for eShop on Containers

In the previous figure, note how eShop embraces the Backend for Frontends pattern
(BFF) by exposing multiple APl gateways. We discussed the BFF pattern earlier in this
chapter. Pay close attention to the Aggregator microservice (in gray) that sits between
the Web-Shopping API Gateway and backend Shopping microservices. The Aggregator
receives a single request from a client, dispatches it to various microservices, aggregates
the results, and sends them back to the requesting client. Such operations typically
require synchronous communication as to produce an immediate response. In eShop,
backend calls from the Aggregator are performed using gRPC as shown in Figure 4-23.

https://learn.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends

| clow
EAL I Microservice

]
: N
| : |
|
- e
I i \ ’ I
o e
| | '
I
e gRPC i ERPC ___I;a_si(;; _____ | I
I A > 3 f{ : Client -r_--ILGRPEF’ bl Microservice |
[Web-Marketing ! ! AShOppll:g ! : :I
| APl Gateway | | Aggregator | i . n [
I D gy || e S J
| | | | 1 I
| | | . . | 1
I N J | Microservice | :
————————————— ——— 1
! —— @R I
gRPC \

I \
|
Microservice :I
I I
| |
- O e
I I
I A

Figure 4-23. gRPC in eShop on Containers

gRPC communication requires both client and server components. In the previous
figure, note how the Shopping Aggregator implements a gRPC client. The client makes
synchronous gRPC calls (in red) to backend microservices, each of which implement a
gRPC server. Both the client and server take advantage of the built-in gRPC plumbing
from the .NET SDK. Client-side stubs provide the plumbing to invoke remote gRPC calls.
Server-side components provide gRPC plumbing that custom service classes can inherit
and consume.

Microservices that expose both a RESTful APl and gRPC communication require multiple
endpoints to manage traffic. You would open an endpoint that listens for HTTP traffic
for the RESTful calls and another for gRPC calls. The gRPC endpoint must be configured
for the HTTP/2 protocol that is required for gRPC communication.

While we strive to decouple microservices with asynchronous communication patterns,
some operations require direct calls. gRPC should be the primary choice for direct
synchronous communication between microservices. Its high-performance
communication protocol, based on HTTP/2 and protocol buffers, make it a perfect
choice.

Looking ahead

Looking ahead, gRPC will continue to gain traction for cloud-native systems. The
performance benefits and ease of development are compelling. However, REST will likely
be around for a long time. It excels for publicly exposed APIs and for backward
compatibility reasons.

Service Mesh communication
infrastructure

Article « 12/14/2023

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

. J

Throughout this chapter, we've explored the challenges of microservice communication.
We said that development teams need to be sensitive to how back-end services
communicate with each other. Ideally, the less inter-service communication, the better.
However, avoidance isn't always possible as back-end services often rely on one another
to complete operations.

We explored different approaches for implementing synchronous HTTP communication
and asynchronous messaging. In each of the cases, the developer is burdened with
implementing communication code. Communication code is complex and time

intensive. Incorrect decisions can lead to significant performance issues.

A more modern approach to microservice communication centers around a new and
rapidly evolving technology entitled Service Mesh. A service mesh@ is a configurable
infrastructure layer with built-in capabilities to handle service-to-service communication,
resiliency, and many cross-cutting concerns. It moves the responsibility for these
concerns out of the microservices and into service mesh layer. Communication is
abstracted away from your microservices.

A key component of a service mesh is a proxy. In a cloud-native application, an instance
of a proxy is typically colocated with each microservice. While they execute in separate

https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

processes, the two are closely linked and share the same lifecycle. This pattern, known as

the Sidecar pattern, and is shown in Figure 4-24.

F
Cloud

Figure 4-24. Service mesh with a side car

Note in the previous figure how messages are intercepted by a proxy that runs
alongside each microservice. Each proxy can be configured with traffic rules specific to
the microservice. It understands messages and can route them across your services and
the outside world.

Along with managing service-to-service communication, the Service Mesh provides

support for service discovery and load balancing.

Once configured, a service mesh is highly functional. The mesh retrieves a
corresponding pool of instances from a service discovery endpoint. It sends a request to
a specific service instance, recording the latency and response type of the result. It
chooses the instance most likely to return a fast response based on different factors,

including the observed latency for recent requests.

A service mesh manages trafficc communication, and networking concerns at the
application level. It understands messages and requests. A service mesh typically
integrates with a container orchestrator. Kubernetes supports an extensible architecture

in which a service mesh can be added.

In chapter 6, we deep-dive into Service Mesh technologies including a discussion on its

architecture and available open-source implementations.

Summary

https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar

In this chapter, we discussed cloud-native communication patterns. We started by
examining how front-end clients communicate with back-end microservices. Along the
way, we talked about APl Gateway platforms and real-time communication. We then
looked at how microservices communicate with other back-end services. We looked at
both synchronous HTTP communication and asynchronous messaging across services.
We covered gRPC, an upcoming technology in the cloud-native world. Finally, we
introduced a new and rapidly evolving technology entitled Service Mesh that can

streamline microservice communication.

Special emphasis was on managed Azure services that can help implement
communication in cloud-native systems:

e Azure Application Gateway
e Azure APl Managementt
e Azure SignalR Service

e Azure Storage Queues

e Azure Service Bus

e Azure Event Grid

e Azure Event Hub &

We next move to distributed data in cloud-native systems and the benefits and

challenges that it presents.

References
e .NET Microservices: Architecture for Containerized .NET applications &
e Designing Interservice Communication for Microservices
e Azure SignalR Service, a fully managed service to add real-time functionality &
e Azure API Gateway Ingress Controller &
e gRPC Documentation @

e Comparing gRPC Services with HTTP APIs

Building gRPC Services with .NET video

https://learn.microsoft.com/en-us/azure/application-gateway/overview
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/api-management/
https://azure.microsoft.com/services/signalr-service/
https://azure.microsoft.com/services/signalr-service/
https://learn.microsoft.com/en-us/azure/storage/queues/storage-queues-introduction
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/event-grid/overview
https://azure.microsoft.com/services/event-hubs/
https://azure.microsoft.com/services/event-hubs/
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://dotnet.microsoft.com/download/thank-you/microservices-architecture-ebook
https://learn.microsoft.com/en-us/azure/architecture/microservices/design/interservice-communication
https://azure.microsoft.com/blog/azure-signalr-service-a-fully-managed-service-to-add-real-time-functionality/
https://azure.microsoft.com/blog/azure-signalr-service-a-fully-managed-service-to-add-real-time-functionality/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://azure.github.io/application-gateway-kubernetes-ingress/
https://grpc.io/docs/guides/
https://grpc.io/docs/guides/
https://learn.microsoft.com/en-us/aspnet/core/grpc/comparison?view=aspnetcore-3.0&preserve-view=false
https://learn.microsoft.com/en-us/Shows/The-Cloud-Native-Show/Building-Microservices-with-gRPC-and-NET

Cloud-native data patterns

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

As we've seen throughout this book, a cloud-native approach changes the way you
design, deploy, and manage applications. It also changes the way you manage and store
data.

Figure 5-1 contrasts the differences.

[Monolithic Application] [Cloud-Native Application]

¥
un - |
[

Mobile Apps

Web Apps

’IIIIIIIIIII EEEER EEEEEER EEEER EEEEEEEEER

Shared Services

n

n u

|] n

n u

| |]

|] n

: [P | (| m

- . | - [| m
" u " [I | | =
n : s | | | | | | =
. - = Service | ! Service ! : Service | a
= - = | l [l [l [
- . = | [| [
n - | | | | | | :
: - : | | | | | I m
- u a ! | | | | | =
n = w ! | | | | |]
" . " : | : | | | =
. . " Data Store /l \ Data Store /| '\ Data Store /l .
n : N ~ N - N e P]
- - 3 3 3 3 L

. Data Store . . Microservice Microservice Microservice "
u

:IIIIIIIIIIIIIIIIIIIIIIIII. :II'
[Single, shared database] [Each microservice owns its data]

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Figure 5-1. Data management in cloud-native applications

Experienced developers will easily recognize the architecture on the left-side of figure 5-
1. In this monolithic application, business service components collocate together in a

shared services tier, sharing data from a single relational database.

In many ways, a single database keeps data management simple. Querying data across
multiple tables is straightforward. Changes to data update together or they all rollback.

ACID transactions guarantee strong and immediate consistency.

Designing for cloud-native, we take a different approach. On the right-side of Figure 5-
1, note how business functionality segregates into small, independent microservices.
Each microservice encapsulates a specific business capability and its own data. The
monolithic database decomposes into a distributed data model with many smaller
databases, each aligning with a microservice. When the smoke clears, we emerge with a
design that exposes a database per microservice.

Database-per-microservice, why?

This database per microservice provides many benefits, especially for systems that must

evolve rapidly and support massive scale. With this model...

e Domain data is encapsulated within the service

e Data schema can evolve without directly impacting other services

e Each data store can independently scale

e A data store failure in one service won't directly impact other services

Segregating data also enables each microservice to implement the data store type that
is best optimized for its workload, storage needs, and read/write patterns. Choices

include relational, document, key-value, and even graph-based data stores.

Figure 5-2 presents the principle of polyglot persistence in a cloud-native system.

https://learn.microsoft.com/en-us/windows/desktop/cossdk/acid-properties
https://learn.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices

Cloud

Mobile app

—_——— -

" APl Gateway | " orierins () ©
— - |

JavaScript/Angularjs

,.
|
|
I
I
I
I
I
I
|
|
|
|
|
|
I
I
I
I
I
L

Figure 5-2. Polyglot data persistence

Note in the previous figure how each microservice supports a different type of data
store.

e The product catalog microservice consumes a relational database to accommodate
the rich relational structure of its underlying data.

e The shopping cart microservice consumes a distributed cache that supports its
simple, key-value data store.

e The ordering microservice consumes both a NoSql document database for write
operations along with a highly denormalized key/value store to accommodate

high-volumes of read operations.

While relational databases remain relevant for microservices with complex data, NoSQL
databases have gained considerable popularity. They provide massive scale and high
availability. Their schemaless nature allows developers to move away from an
architecture of typed data classes and ORMs that make change expensive and time-
consuming. We cover NoSQL databases later in this chapter.

While encapsulating data into separate microservices can increase agility, performance,
and scalability, it also presents many challenges. In the next section, we discuss these
challenges along with patterns and practices to help overcome them.

Cross-service queries

While microservices are independent and focus on specific functional capabilities, like
inventory, shipping, or ordering, they frequently require integration with other

microservices. Often the integration involves one microservice querying another for

data. Figure 5-3 shows the scenario.

/— === === -\ T

od 04
Basket Lineltem oWy Product
’__...--" Catalog Service
Y P o, [
Product Price
\ _/ Price
Shopping Basket Service Pricing Service

Figure 5-3. Querying across microservices

In the preceding figure, we see a shopping basket microservice that adds an item to a
user's shopping basket. While the data store for this microservice contains basket and
line item data, it doesn't maintain product or pricing data. Instead, those data items are
owned by the catalog and pricing microservices. This aspect presents a problem. How
can the shopping basket microservice add a product to the user's shopping basket when
it doesn't have product nor pricing data in its database?

One option discussed in Chapter 4 is a direct HTTP call from the shopping basket to the
catalog and pricing microservices. However, in chapter 4, we said synchronous HTTP
calls couple microservices together, reducing their autonomy and diminishing their

architectural benefits.

We could also implement a request-reply pattern with separate inbound and outbound
queues for each service. However, this pattern is complicated and requires plumbing to
correlate request and response messages. While it does decouple the backend
microservice calls, the calling service must still synchronously wait for the call to
complete. Network congestion, transient faults, or an overloaded microservice and can
result in long-running and even failed operations.

Instead, a widely accepted pattern for removing cross-service dependencies is the
Materialized View Pattern, shown in Figure 5-4.

https://learn.microsoft.com/en-us/azure/architecture/patterns/async-request-reply
https://learn.microsoft.com/en-us/azure/architecture/patterns/materialized-view

[- —) o—

GYNes
JS

Pw ;
Catalog Service
r— Syncs (e

icing %
Product/Pricing ¥, Pubss,p

Read model '-._
\ ‘)/ Price

-
*

Shopping Basket Service . Pricing Service

-

Basket Lineltem Product

Bead Model
Contains denormalized
Product and Pricing data

Figure 5-4. Materialized View Pattern

With this pattern, you place a local data table (known as a read model) in the shopping
basket service. This table contains a denormalized copy of the data needed from the
product and pricing microservices. Copying the data directly into the shopping basket
microservice eliminates the need for expensive cross-service calls. With the data local to
the service, you improve the service's response time and reliability. Additionally, having
its own copy of the data makes the shopping basket service more resilient. If the catalog
service should become unavailable, it wouldn't directly impact the shopping basket
service. The shopping basket can continue operating with the data from its own store.

The catch with this approach is that you now have duplicate data in your system.

However, strategically duplicating data in cloud-native systems is an established practice
and not considered an anti-pattern, or bad practice. Keep in mind that one and only one
service can own a data set and have authority over it. You'll need to synchronize the read
models when the system of record is updated. Synchronization is typically implemented

via asynchronous messaging with a publish/subscribe pattern, as shown in Figure 5.4.

Distributed transactions

While querying data across microservices is difficult, implementing a transaction across
several microservices is even more complex. The inherent challenge of maintaining data
consistency across independent data sources in different microservices can't be
understated. The lack of distributed transactions in cloud-native applications means that
you must manage distributed transactions programmatically. You move from a world of

immediate consistency to that of eventual consistency.

Figure 5-5 shows the problem.

)

Order Payment Inventory Shipping Notification
Service Service Service Service Service
~—
(Create)
Fendin Validate Update Source Send
ez) Payment Inventory Shipment Invoice
Complete
Order il

Figure 5-5. Implementing a transaction across microservices

In the preceding figure, five independent microservices participate in a distributed
transaction that creates an order. Each microservice maintains its own data store and
implements a local transaction for its store. To create the order, the local transaction for
each individual microservice must succeed, or all must abort and roll back the operation.
While built-in transactional support is available inside each of the microservices, there's
no support for a distributed transaction that would span across all five services to keep
data consistent.

Instead, you must construct this distributed transaction programmatically.

A popular pattern for adding distributed transactional support is the Saga pattern. It's
implemented by grouping local transactions together programmatically and sequentially
invoking each one. If any of the local transactions fail, the Saga aborts the operation and
invokes a set of compensating transactions. The compensating transactions undo the
changes made by the preceding local transactions and restore data consistency. Figure
5-6 shows a failed transaction with the Saga pattern.

)))))
Order Payment Inventory Shipping Notification
Service Service Service Service Service

\ J — — — —
Create Validate Update Source Send
Pending [__» x 5 (_ en

d Payment Shipment Invoice

. Order @ @ Inventory s

Cancel Cancel Adjust
Order Payment Inventy
—_///

Complete
Order

https://learn.microsoft.com/en-us/azure/architecture/reference-architectures/saga/saga
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

Figure 5-6. Rolling back a transaction

In the previous figure, the Update Inventory operation has failed in the Inventory
microservice. The Saga invokes a set of compensating transactions (in red) to adjust the
inventory counts, cancel the payment and the order, and return the data for each
microservice back to a consistent state.

Saga patterns are typically choreographed as a series of related events, or orchestrated
as a set of related commands. In Chapter 4, we discussed the service aggregator pattern
that would be the foundation for an orchestrated saga implementation. We also
discussed eventing along with Azure Service Bus and Azure Event Grid topics that would
be a foundation for a choreographed saga implementation.

High volume data

Large cloud-native applications often support high-volume data requirements. In these
scenarios, traditional data storage techniques can cause bottlenecks. For complex
systems that deploy on a large scale, both Command and Query Responsibility
Segregation (CQRS) and Event Sourcing may improve application performance.

CQRS

CQRS, is an architectural pattern that can help maximize performance, scalability, and
security. The pattern separates operations that read data from those operations that

write data.

For normal scenarios, the same entity model and data repository object are used for
both read and write operations.

However, a high volume data scenario can benefit from separate models and data tables
for reads and writes. To improve performance, the read operation could query against a
highly denormalized representation of the data to avoid expensive repetitive table joins
and table locks. The write operation, known as a command, would update against a fully
normalized representation of the data that would guarantee consistency. You then need
to implement a mechanism to keep both representations in sync. Typically, whenever
the write table is modified, it publishes an event that replicates the modification to the

read table.

Figure 5-7 shows an implementation of the CQRS pattern.

https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-messaging-overview
https://learn.microsoft.com/en-us/azure/event-grid/overview
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/messaging#commands
https://learn.microsoft.com/en-us/azure/architecture/guide/technology-choices/messaging#events

Write Store

(Tables) %
Eventual
Consistency

-
L]
L]
L
>

Read Store
(Views)

Figure 5-7. CQRS implementation

In the previous figure, separate command and query models are implemented. Each
data write operation is saved to the write store and then propagated to the read store.
Pay close attention to how the data propagation process operates on the principle of
eventual consistency ©'. The read model eventually synchronizes with the write model,
but there may be some lag in the process. We discuss eventual consistency in the next
section.

This separation enables reads and writes to scale independently. Read operations use a
schema optimized for queries, while the writes use a schema optimized for updates.
Read queries go against denormalized data, while complex business logic can be
applied to the write model. As well, you might impose tighter security on write
operations than those exposing reads.

Implementing CQRS can improve application performance for cloud-native services.
However, it does result in a more complex design. Apply this principle carefully and
strategically to those sections of your cloud-native application that will benefit from it.
For more on CQRS, see the Microsoft book .NET Microservices: Architecture for
Containerized .NET Applications.

Event sourcing

Another approach to optimizing high volume data scenarios involves Event Sourcing.

A system typically stores the current state of a data entity. If a user changes their phone
number, for example, the customer record is updated with the new number. We always
know the current state of a data entity, but each update overwrites the previous state.

In most cases, this model works fine. In high volume systems, however, overhead from

transactional locking and frequent update operations can impact database performance,
responsiveness, and limit scalability.

https://www.cloudcomputingpatterns.org/eventual_consistency/
https://www.cloudcomputingpatterns.org/eventual_consistency/
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/apply-simplified-microservice-cqrs-ddd-patterns
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

Event Sourcing takes a different approach to capturing data. Each operation that affects
data is persisted to an event store. Instead of updating the state of a data record, we
append each change to a sequential list of past events - similar to an accountant's
ledger. The Event Store becomes the system of record for the data. It's used to
propagate various materialized views within the bounded context of a microservice.

Figure 5.8 shows the pattern.

Presentation

Some options for
consuming events

T

Cart created

I Cart
Cart ID Cart Item
Item I.Iaddod Dote \ Cart 1D
¢ Customer Item key
! 2 added Address Item name External
| Quantity systems and
Item 1 removed = applications

s4e

|
Shipping information added

!

Materialized View

Query for
#» current state
of entities

Event store

Figure 5-8. Event Sourcing

In the previous figure, note how each entry (in blue) for a user's shopping cart is
appended to an underlying event store. In the adjoining materialized view, the system
projects the current state by replaying all the events associated with each shopping cart.
This view, or read model, is then exposed back to the Ul. Events can also be integrated
with external systems and applications or queried to determine the current state of an
entity. With this approach, you maintain history. You know not only the current state of

an entity, but also how you reached this state.

Mechanically speaking, event sourcing simplifies the write model. There are no updates
or deletes. Appending each data entry as an immutable event minimizes contention,
locking, and concurrency conflicts associated with relational databases. Building read
models with the materialized view pattern enables you to decouple the view from the

write model and choose the best data store to optimize the needs of your application
ul.

For this pattern, consider a data store that directly supports event sourcing. Azure
Cosmos DB, MongoDB, Cassandra, CouchDB, and RavenDB are good candidates.

As with all patterns and technologies, implement strategically and when needed. While
event sourcing can provide increased performance and scalability, it comes at the
expense of complexity and a learning curve.

SQL vs. NoSQL data

Article « 04/07/2022

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Relational (SQL) and non-relational (NoSQL) are two types of database systems
commonly implemented in cloud-native apps. They're built differently, store data
differently, and accessed differently. In this section, we'll look at both. Later in this
chapter, we'll look at an emerging database technology called NewSQOL.

Relational databases have been a prevalent technology for decades. They're mature,
proven, and widely implemented. Competing database products, tooling, and expertise
abound. Relational databases provide a store of related data tables. These tables have a
fixed schema, use SQL (Structured Query Language) to manage data, and support ACID
guarantees: atomicity, consistency, isolation and durability.

NoSQL databases refer to high-performance, non-relational data stores. They excel in
their ease-of-use, scalability, resilience, and availability characteristics. Instead of joining
tables of normalized data, NoSQL stores unstructured or semi-structured data, often in
key-value pairs or JSON documents. NoSQL databases typically don't provide ACID
guarantees beyond the scope of a single database partition. High volume services that

require sub second response time favor NoSQL datastores.

The impact of NoSQL & technologies for distributed cloud-native systems can't be
overstated. The proliferation of new data technologies in this space has disrupted

solutions that once exclusively relied on relational databases.

https://www.geeksforgeeks.org/introduction-to-nosql/
https://www.geeksforgeeks.org/introduction-to-nosql/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

NoSQL databases include several different models for accessing and managing data,
each suited to specific use cases. Figure 5-9 presents four common models.

. (o)
Document Key-Value Wide-Column Graph
Store Store Store Store

Figure 5-9: Data models for NoSQL databases

. Expand table

Model Characteristics

Document Store Data and metadata are stored hierarchically in JSON-based documents inside
the database.

Key Value Store The simplest of the NoSQL databases, data is represented as a collection of
key-value pairs.

Wide-Column Related data is stored as a set of nested-key/value pairs within a single
Store column.
Graph Store Data is stored in a graph structure as node, edge, and data properties.

CAP and PACELC theorems

As a way to understand the differences between these types of databases, consider the
CAP theorem, a set of principles applied to distributed systems that store state. Figure
5-10 shows the three properties of the CAP theorem.

Availability

4’0 \s\;}\\\

Partition

Tolerance

Figure 5-10. The CAP theorem

The theorem states that distributed data systems will offer a trade-off between
consistency, availability, and partition tolerance. And, that any database can only
guarantee two of the three properties:

e Consistency. Every node in the cluster responds with the most recent data, even if
the system must block the request until all replicas update. If you query a
"consistent system" for an item that is currently updating, you'll wait for that
response until all replicas successfully update. However, you'll receive the most
current data. It should be understood that the term "consistency" as it's used in the
context of the CAP theorem has a technical meaning that is distinct from the way

“consistency"” is defined in the context of ACID guarantees.

e Availability. Every request received by a non-failing node in the system must result
in a response. Put it simply, if you query an "available system" for an item that is
updating, you'll get the best possible answer the service can provide at that
moment. But note that "availability" as defined by CAP theorem is technically
different from "high availability" as it's conventionally known for distributed
systems.

e Partition Tolerance. Guarantees the system continues to operate even if a
replicated data node fails or loses connectivity with other replicated data nodes.

CAP theorem explains the tradeoffs associated with managing consistency and
availability during a network partition; however tradeoffs with respect to consistency

and performance also exist with the absence of a network partition.

O Note

Even if you choose availability over consistency, in times of network partition,
availability will suffer. CAP available system is more available to some of its clients

but it's not necessarily "highly available" to all its clients.

& J

CAP theorem is often further extended to PACELC ' to explain the tradeoffs more
comprehensively. The CAP theorem is particularly relevant in intermittently connected
environments, such as those related to the Internet of Things (loT), environmental
monitoring, and mobile applications. In these contexts, devices may become partitioned
due to challenging physical conditions, such as power outages or when entering
confined spaces like elevators. For distributed systems, such as cloud applications, it is
more appropriate to use the PACELC theorem, which is more comprehensive and
considers trade-offs such as latency and consistency even in the absence of network
partitions.

Relational databases typically provide consistency and availability, but not partition
tolerance. They're typically provisioned to a single server and scale vertically by adding

more resources to the machine.

Many relational database systems support built-in replication features where copies of
the primary database can be made to other secondary server instances. Write
operations are made to the primary instance and replicated to each of the secondaries.
Upon a failure, the primary instance can fail over to a secondary to provide high
availability. Secondaries can also be used to distribute read operations. While writes
operations always go against the primary replica, read operations can be routed to any
of the secondaries to reduce system load.

Data can also be horizontally partitioned across multiple nodes, such as with sharding.

But, sharding dramatically increases operational overhead by spitting data across many
pieces that cannot easily communicate. It can be costly and time consuming to manage.
Relational features that include table joins, transactions, and referential integrity require

steep performance penalties in sharded deployments.

Replication consistency and recovery point objectives can be tuned by configuring
whether replication occurs synchronously or asynchronously. If data replicas were to
lose network connectivity in a "highly consistent" or synchronous relational database
cluster, you wouldn't be able to write to the database. The system would reject the write
operation as it can't replicate that change to the other data replica. Every data replica

has to update before the transaction can complete.

http://www.cs.umd.edu/%7Eabadi/papers/abadi-pacelc.pdf
http://www.cs.umd.edu/%7Eabadi/papers/abadi-pacelc.pdf
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-elastic-scale-introduction

NoSQL databases typically support high availability and partition tolerance. They scale
out horizontally, often across commodity servers. This approach provides tremendous
availability, both within and across geographical regions at a reduced cost. You partition
and replicate data across these machines, or nodes, providing redundancy and fault
tolerance. Consistency is typically tuned through consensus protocols or quorum
mechanisms. They provide more control when navigating tradeoffs between tuning

synchronous versus asynchronous replication in relational systems.

If data replicas were to lose connectivity in a "highly available" NoSQL database cluster,
you could still complete a write operation to the database. The database cluster would
allow the write operation and update each data replica as it becomes available. NoSQL
databases that support multiple writable replicas can further strengthen high availability

by avoiding the need for failover when optimizing recovery time objective.

Modern NoSQL databases typically implement partitioning capabilities as a feature of

their system design. Partition management is often built-in to the database, and routing
is achieved through placement hints - often called partition keys. A flexible data models
enables the NoSQL databases to lower the burden of schema management and improve

availability when deploying application updates that require data model changes.

High availability and massive scalability are often more critical to the business than
relational table joins and referential integrity. Developers can implement techniques and
patterns such as Sagas, CQRS, and asynchronous messaging to embrace eventual

consistency.

Nowadays, care must be taken when considering the CAP theorem constraints. A
new type of database, called NewSQL, has emerged which extends the relational
database engine to support both horizontal scalability and the scalable performance
of NoSQL systems.

Considerations for relational vs. NoSQL systems

Based upon specific data requirements, a cloud-native-based microservice can
implement a relational, NoSQL datastore or both.

. Expand table

Consider a NoSQL datastore when: Consider a relational database
when:

You have high volume workloads that require predictable Your workload volume generally

latency at large scale (for example, latency measured in fits within thousands of

transactions per second

Consider a NoSQL datastore when: Consider a relational database

when:

milliseconds while performing millions of transactions per

second)

Your data is dynamic and frequently changes Your data is highly structured and
requires referential integrity

Relationships can be de-normalized data models Relationships are expressed
through table joins on normalized
data models

Data retrieval is simple and expressed without table joins You work with complex queries
and reports

Data is typically replicated across geographies and requires Data is typically centralized, or

finer control over consistency, availability, and performance can be replicated regions
asynchronously

Your application will be deployed to commodity hardware, Your application will be deployed
such as with public clouds to large, high-end hardware

In the next sections, we'll explore the options available in the Azure cloud for storing
and managing your cloud-native data.

Database as a Service

To start, you could provision an Azure virtual machine and install your database of
choice for each service. While you'd have full control over the environment, you'd forgo
many built-in features of the cloud platform. You'd also be responsible for managing the
virtual machine and database for each service. This approach could quickly become

time-consuming and expensive.

Instead, cloud-native applications favor data services exposed as a Database as a Service
(DBaaS). Fully managed by a cloud vendor, these services provide built-in security,
scalability, and monitoring. Instead of owning the service, you simply consume it as a
backing service. The provider operates the resource at scale and bears the responsibility

for performance and maintenance.

They can be configured across cloud availability zones and regions to achieve high
availability. They all support just-in-time capacity and a pay-as-you-go model. Azure
features different kinds of managed data service options, each with specific benefits.

We'll first look at relational DBaaS services available in Azure. You'll see that Microsoft's

flagship SQL Server database is available along with several open-source options. Then,

we'll talk about the NoSQL data services in Azure.

Azure relational databases

For cloud-native microservices that require relational data, Azure offers four managed

relational databases as a service (DBaaS) offerings, shown in Figure 5-11.

= = . =
SQL Database sqL MySQL My MariaDB _f PostgreSQL @

Built-in high availability with a 99.99% service level agreement
Automatic upgrades, patching, and backups

Shared Database On-demand scaling with pay-as-you-go pricing

Services Platform Intelligence: Advisors, tuning, and monitoring
Active geo-replication with readable secondary databases
Enterprise-grade security to protect data at-rest and in-motion

Azure Compute layer
Azure Storage layer

Globally available across 54 Azure regions

Figure 5-11. Managed relational databases available in Azure

In the previous figure, note how each sits upon a common DBaaS infrastructure which
features key capabilities at no additional cost.

These features are especially important to organizations who provision large numbers of
databases, but have limited resources to administer them. You can provision an Azure
database in minutes by selecting the amount of processing cores, memory, and
underlying storage. You can scale the database on-the-fly and dynamically adjust

resources with little to no downtime.

Azure SQL Database

Development teams with expertise in Microsoft SQL Server should consider Azure SQL
Database. It's a fully managed relational database-as-a-service (DBaaS) based on the
Microsoft SQL Server Database Engine. The service shares many features found in the
on-premises version of SQL Server and runs the latest stable version of the SQL Server
Database Engine.

For use with a cloud-native microservice, Azure SQL Database is available with three

deployment options:

https://learn.microsoft.com/en-us/azure/sql-database/
https://learn.microsoft.com/en-us/azure/sql-database/

e A Single Database represents a fully managed SQL Database running on an Azure
SQL Database server in the Azure cloud. The database is considered contained as it
has no configuration dependencies on the underlying database server.

e A Managed Instance is a fully managed instance of the Microsoft SQL Server
Database Engine that provides near-100% compatibility with an on-premises SQL
Server. This option supports larger databases, up to 35 TB and is placed in an
Azure Virtual Network for better isolation.

e Azure SQL Database serverless is a compute tier for a single database that
automatically scales based on workload demand. It bills only for the amount of
compute used per second. The service is well suited for workloads with
intermittent, unpredictable usage patterns, interspersed with periods of inactivity.
The serverless compute tier also automatically pauses databases during inactive
periods so that only storage charges are billed. It automatically resumes when

activity returns.

Beyond the traditional Microsoft SQL Server stack, Azure also features managed

versions of three popular open-source databases.

Open-source databases in Azure

Open-source relational databases have become a popular choice for cloud-native
applications. Many enterprises favor them over commercial database products,
especially for cost savings. Many development teams enjoy their flexibility, community-
backed development, and ecosystem of tools and extensions. Open-source databases
can be deployed across multiple cloud providers, helping minimize the concern of

"vendor lock-in."

Developers can easily self-host any open-source database on an Azure VM. While
providing full control, this approach puts you on the hook for the management,

monitoring, and maintenance of the database and VM.

However, Microsoft continues its commitment to keeping Azure an "open platform" by

offering several popular open-source databases as fully managed DBaaS services.

Azure Database for MySQL

MySQL® is an open-source relational database and a pillar for applications built on the
LAMP software stack . Widely chosen for read heavy workloads, it's used by many large
organizations, including Facebook, Twitter, and YouTube. The community edition is
available for free, while the enterprise edition requires a license purchase. Originally

https://learn.microsoft.com/en-us/azure/sql-database/sql-database-servers
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-servers
https://learn.microsoft.com/en-us/sql/relational-databases/databases/contained-databases
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-managed-instance
https://learn.microsoft.com/en-us/azure/virtual-network/virtual-networks-overview
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-serverless
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/LAMP_(software_bundle)
https://en.wikipedia.org/wiki/LAMP_(software_bundle)

created in 1995, the product was purchased by Sun Microsystems in 2008. Oracle
acquired Sun and MySQL in 2010.

Azure Database for MySQLZ is a managed relational database service based on the
open-source MySQL Server engine. It uses the MySQL Community edition. The Azure
MySQL server is the administrative point for the service. It's the same MySQL server
engine used for on-premises deployments. The engine can create a single database per
server or multiple databases per server that share resources. You can continue to
manage data using the same open-source tools without having to learn new skills or

manage virtual machines.

Azure Database for MariaDB

MariaDB @ Server is another popular open-source database server. It was created as a
fork of MySQL when Oracle purchased Sun Microsystems, who owned MySQL. The
intent was to ensure that MariaDB remained open-source. As MariaDB is a fork of
MySQL, the data and table definitions are compatible, and the client protocols,

structures, and APlIs, are close-knit.

MariaDB has a strong community and is used by many large enterprises. While Oracle
continues to maintain, enhance, and support MySQL, the MariaDB foundation manages
MariaDB, allowing public contributions to the product and documentation.

Azure Database for MariaDB @' is a fully managed relational database as a service in the
Azure cloud. The service is based on the MariaDB community edition server engine. It
can handle mission-critical workloads with predictable performance and dynamic

scalability.

Azure Database for PostgreSQL

PostgreSQL®' is an open-source relational database with over 30 years of active
development. PostgreSQL has a strong reputation for reliability and data integrity. It's
feature rich, SQL compliant, and considered more performant than MySQL - especially
for workloads with complex queries and heavy writes. Many large enterprises including

Apple, Red Hat, and Fujitsu have built products using PostgreSQL.

Azure Database for PostgreSQL & is a fully managed relational database service, based
on the open-source Postgres database engine. The service supports many development
platforms, including C++, Java, Python, Node, C#, and PHP. You can migrate PostgreSQL

databases to it using the command-line interface tool or Azure Data Migration Service.

Azure Database for PostgreSQL is available with two deployment options:

https://azure.microsoft.com/services/mysql/
https://azure.microsoft.com/services/mysql/
https://mariadb.com/
https://mariadb.com/
https://azure.microsoft.com/services/mariadb/
https://azure.microsoft.com/services/mariadb/
https://www.postgresql.org/
https://www.postgresql.org/
https://azure.microsoft.com/services/postgresql/
https://azure.microsoft.com/services/postgresql/

e The Single Server deployment option is a central administrative point for multiple
databases to which you can deploy many databases. The pricing is structured per-
server based upon cores and storage.

e The Hyperscale (Citus) option® is powered by Citus Data technology. It enables
high performance by horizontally scaling a single database across hundreds of
nodes to deliver fast performance and scale. This option allows the engine to fit

more data in memory, parallelize queries across hundreds of nodes, and index data
faster.

NoSQL data in Azure

Cosmos DB is a fully managed, globally distributed NoSQL database service in the Azure
cloud. It has been adopted by many large companies across the world, including Coca-
Cola, Skype, ExxonMobil, and Liberty Mutual.

If your services require fast response from anywhere in the world, high availability, or

elastic scalability, Cosmos DB is a great choice. Figure 5-12 shows Cosmos DB.

_ O Wormtn, < OF
re
MongoDB Table API

< W VEIEREE _ cassandra
T co I, /(Z/ZZ/
e *-000 3 o e e 4,
SQL -7 &0 Column-famil, 3 v, T~ /s
/,// @ ° oumpemy- Document [\\\\
//// * O T T T —— Graph S~

Pl Key-value _ - — ~— ~o
Pre - Guaranteed low latency at T~ o~

- —— ~~

- the 99" percentile ~<
~="" Elastic scale out of storage Five well-defined ~~
~

- & throughput consistency models ~o
- ~

-
Prs Turnkey global Comprehensive ~

distribution 9 9 SLAs

Figure 5-12: Overview of Azure Cosmos DB

The previous figure presents many of the built-in cloud-native capabilities available in

Cosmos DB. In this section, we'll take a closer look at them.
Global support

Cloud-native applications often have a global audience and require global scale.

You can distribute Cosmos databases across regions or around the world, placing data
close to your users, improving response time, and reducing latency. You can add or

remove a database from a region without pausing or redeploying your services. In the

https://learn.microsoft.com/en-us/azure/postgresql/concepts-servers
https://azure.microsoft.com/blog/get-high-performance-scaling-for-your-azure-database-workloads-with-hyperscale/
https://azure.microsoft.com/blog/get-high-performance-scaling-for-your-azure-database-workloads-with-hyperscale/

background, Cosmos DB transparently replicates the data to each of the configured

regions.

Cosmos DB supports active/active @ clustering at the global level, enabling you to

configure any of your database regions to support both writes and reads.

The Multi-region write protocol is an important feature in Cosmos DB that enables the

following functionality:
e Unlimited elastic write and read scalability.
e 99.999% read and write availability all around the world.

e Guaranteed reads and writes served in less than 10 milliseconds at the 99th
percentile.

With the Cosmos DB Multi-Homing APls, your microservice is automatically aware of the
nearest Azure region and sends requests to it. The nearest region is identified by
Cosmos DB without any configuration changes. Should a region become unavailable,
the Multi-Homing feature will automatically route requests to the next nearest available

region.

Multi-model support

When replatforming monolithic applications to a cloud-native architecture,
development teams sometimes have to migrate open-source, NoSQL data stores.
Cosmos DB can help you preserve your investment in these NoSQL datastores with its
multi-model data platform. The following table shows the supported NoSQL
compatibility APIs&,

. Expand table

Provider Description
NoSQL API API for NoSQL stores data in document format

Mongo DB APl Supports Mongo DB APIs and JSON documents

Gremlin API Supports Gremlin APl with graph-based nodes and edge data representations
Cassandra API Supports Casandra API for wide-column data representations
Table API Supports Azure Table Storage with premium enhancements

PostgreSQL APl Managed service for running PostgreSQL at any scale

https://kemptechnologies.com/white-papers/unfog-confusion-active-passive-activeactive-load-balancing/
https://kemptechnologies.com/white-papers/unfog-confusion-active-passive-activeactive-load-balancing/
https://learn.microsoft.com/en-us/azure/cosmos-db/conflict-resolution-policies
https://learn.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally
https://www.wikiwand.com/en/Cosmos_DB
https://www.wikiwand.com/en/Cosmos_DB

Development teams can migrate existing Mongo, Gremlin, or Cassandra databases into
Cosmos DB with minimal changes to data or code. For new apps, development teams
can choose among open-source options or the built-in SQL APl model.

Internally, Cosmos stores the data in a simple struct format made up of primitive
data types. For each request, the database engine translates the primitive data into
the model representation you've selected.

In the previous table, note the Table APl option. This APl is an evolution of Azure Table
Storage. Both share the same underlying table model, but the Cosmos DB Table API
adds premium enhancements not available in the Azure Storage API. The following table

contrasts the features.

. Expand table

Feature Azure Table Storage Azure Cosmos DB

Latency Fast Single-digit millisecond latency for reads
and writes anywhere in the world

Throughput Limit of 20,000 operations per Unlimited operations per table
table
Global Single region with optional single Turnkey distributions to all regions with
Distribution secondary read region automatic failover
Indexing Available for partition and row key Automatic indexing of all properties

properties only

Pricing Optimized for cold workloads (low Optimized for hot workloads (high
throughput : storage ratio) throughput : storage ratio)

Microservices that consume Azure Table storage can easily migrate to the Cosmos DB
Table API. No code changes are required.

Tunable consistency

Earlier in the Relational vs. NoSQL section, we discussed the subject of data consistency.
Data consistency refers to the integrity of your data. Cloud-native services with
distributed data rely on replication and must make a fundamental tradeoff between
read consistency, availability, and latency.

Most distributed databases allow developers to choose between two consistency
models: strong consistency and eventual consistency. Strong consistency is the gold
standard of data programmability. It guarantees that a query will always return the most

https://learn.microsoft.com/en-us/azure/cosmos-db/table-introduction

current data - even if the system must incur latency waiting for an update to replicate
across all database copies. While a database configured for eventual consistency will
return data immediately, even if that data isn't the most current copy. The latter option

enables higher availability, greater scale, and increased performance.

Azure Cosmos DB offers five well-defined consistency models shown in Figure 5-13.

Strong Bounded Staleness Session Consistent Prefix Eventual

: Stronger Consistency : : Weaker Consistency

Figure 5-13: Cosmos DB Consistency Levels

These options enable you to make precise choices and granular tradeoffs for
consistency, availability, and the performance for your data. The levels are presented in
the following table.

.. Expand table

Consistency Description
Level
Eventual No ordering guarantee for reads. Replicas will eventually converge.

Constant Prefix ~ Reads are still eventual, but data is returned in the ordering in which it is
written.

Session Guarantees you can read any data written during the current session. It is the
default consistency level.

Bounded Reads trail writes by interval that you specify.
Staleness
Strong Reads are guaranteed to return most recent committed version of an item. A

client never sees an uncommitted or partial read.

In the article Getting Behind the 9-Ball: Cosmos DB Consistency Levels Explained £,
Microsoft Program Manager Jeremy Likness provides an excellent explanation of the five

models.

Partitioning

Azure Cosmos DB embraces automatic partitioning to scale a database to meet the

performance needs of your cloud-native services.

https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://learn.microsoft.com/en-us/azure/cosmos-db/partitioning-overview

You manage data in Cosmos DB data by creating databases, containers, and items.

Containers live in a Cosmos DB database and represent a schema-agnostic grouping of
items. Items are the data that you add to the container. They're represented as
documents, rows, nodes, or edges. All items added to a container are automatically
indexed.

To partition the container, items are divided into distinct subsets called logical partitions.
Logical partitions are populated based on the value of a partition key that is associated
with each item in a container. Figure 5-14 shows two containers each with a logical

partition based on a partition key value.

partition key = “city” partition key = “airport”
| city":London" | | “cty": NvC" | | “aty":Pars” | | ity Rome” | | airport':AMS” | | “airport’s"SEA” || “airport:LAX" |
== == BEE BEE == == .
| walll | BN BE Logical
|[; cee | .. Partitions
T ." == e : --
: —— ——
: 1 | . 1]
: | | : I
5.8.0. 3 3 30 :
S - N m Phys_tc_a{
o m o e - o Partitions

Figure 5-14: Cosmos DB partitioning mechanics

Note in the previous figure how each item includes a partition key of either 'city' or
‘airport’. The key determines the item's logical partition. Items with a city code are
assigned to the container on the left, and items with an airport code, to the container on
the right. Combining the partition key value with the ID value creates an item's index,
which uniquely identifies the item.

Internally, Cosmos DB automatically manages the placement of logical partitions on
physical partitions to satisfy the scalability and performance needs of the container. As
application throughput and storage requirements increase, Azure Cosmos DB
redistributes logical partitions across a greater number of servers. Redistribution

operations are managed by Cosmos DB and invoked without interruption or downtime.

NewSQL databases

https://learn.microsoft.com/en-us/azure/cosmos-db/partition-data

NewSQL is an emerging database technology that combines the distributed scalability
of NoSQL with the ACID guarantees of a relational database. NewSQL databases are
important for business systems that must process high-volumes of data, across
distributed environments, with full transactional support and ACID compliance. While a
NoSQL database can provide massive scalability, it does not guarantee data consistency.
Intermittent problems from inconsistent data can place a burden on the development
team. Developers must construct safeguards into their microservice code to manage
problems caused by inconsistent data.

The Cloud Native Computing Foundation (CNCF) features several NewSQL database
projects.

. Expand table

Project Characteristics

Cockroach An ACID-compliant, relational database that scales globally. Add a new node to a

DB cluster and CockroachDB takes care of balancing the data across instances and
geographies. It creates, manages, and distributes replicas to ensure reliability. It's
open source and freely available.

TiDB An open-source database that supports Hybrid Transactional and Analytical
Processing (HTAP) workloads. It is MySQL-compatible and features horizontal
scalability, strong consistency, and high availability. TiDB acts like a MySQL server.
You can continue to use existing MySQL client libraries, without requiring extensive
code changes to your application.

YugabyteDB An open source, high-performance, distributed SQL database. It supports low
query latency, resilience against failures, and global data distribution. YugabyteDB
is PostgreSQL-compatible and handles scale-out RDBMS and internet-scale OLTP
workloads. The product also supports NoSQL and is compatible with Cassandra.

Vitess Vitess is a database solution for deploying, scaling, and managing large clusters of
MySQL instances. It can run in a public or private cloud architecture. Vitess
combines and extends many important MySQL features and features both vertical
and horizontal sharding support. Originated by YouTube, Vitess has been serving
all YouTube database traffic since 2011.

The open-source projects in the previous figure are available from the Cloud Native
Computing Foundation. Three of the offerings are full database products, which include
.NET support. The other, Vitess, is a database clustering system that horizontally scales
large clusters of MySQL instances.

A key design goal for NewSQL databases is to work natively in Kubernetes, taking
advantage of the platform's resiliency and scalability.

NewSQL databases are designed to thrive in ephemeral cloud environments where
underlying virtual machines can be restarted or rescheduled at a moment's notice. The
databases are designed to survive node failures without data loss nor downtime.
CockroachDB, for example, is able to survive a machine loss by maintaining three
consistent replicas of any data across the nodes in a cluster.

Kubernetes uses a Services construct to allow a client to address a group of identical
NewSQL databases processes from a single DNS entry. By decoupling the database
instances from the address of the service with which it's associated, we can scale without
disrupting existing application instances. Sending a request to any service at a given
time will always yield the same result.

In this scenario, all database instances are equal. There are no primary or secondary
relationships. Techniques like consensus replication found in CockroachDB allow any
database node to handle any request. If the node that receives a load-balanced request
has the data it needs locally, it responds immediately. If not, the node becomes a
gateway and forwards the request to the appropriate nodes to get the correct answer.
From the client's perspective, every database node is the same: They appear as a single
logical database with the consistency guarantees of a single-machine system, despite
having dozens or even hundreds of nodes that are working behind the scenes.

For a detailed look at the mechanics behind NewSQL databases, see the DASH: Four
Properties of Kubernetes-Native Databases® article.

Data migration to the cloud

One of the more time-consuming tasks is migrating data from one data platform to
another. The Azure Data Migration Service can help expedite such efforts. It can
migrate data from several external database sources into Azure Data platforms with

minimal downtime. Target platforms include the following services:

e Azure SQL Database

e Azure Database for MySQL

e Azure Database for MariaDB

e Azure Database for PostgreSQL
e Azure Cosmos DB

The service provides recommendations to guide you through the changes required to
execute a migration, both small or large.

Previous m

https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://azure.microsoft.com/services/database-migration/
https://azure.microsoft.com/services/database-migration/

Caching in a cloud-native app

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

The benefits of caching are well understood. The technique works by temporarily
copying frequently accessed data from a backend data store to fast storage that's

located closer to the application. Caching is often implemented where...

e Data remains relatively static.
e Data access is slow, especially compared to the speed of the cache.

e Data is subject to high levels of contention.

Why?

As discussed in the Microsoft caching guidance, caching can increase performance,
scalability, and availability for individual microservices and the system as a whole. It
reduces the latency and contention of handling large volumes of concurrent requests to
a data store. As data volume and the number of users increase, the greater the benefits
of caching become.

Caching is most effective when a client repeatedly reads data that is immutable or that
changes infrequently. Examples include reference information such as product and

pricing information, or shared static resources that are costly to construct.

https://learn.microsoft.com/en-us/azure/architecture/best-practices/caching
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

While microservices should be stateless, a distributed cache can support concurrent
access to session state data when absolutely required.

Also consider caching to avoid repetitive computations. If an operation transforms data

or performs a complicated calculation, cache the result for subsequent requests.

Caching architecture

Cloud native applications typically implement a distributed caching architecture. The
cache is hosted as a cloud-based backing service, separate from the microservices.
Figure 5-15 shows the architecture.

I cloud =------------:

. . e

' i : "~ Microservice 1 7
| : : Weh AP| s
: : | HILTE
I e rieeas : Koy 0 -
e +*" | _container e

@i @ ="

|
|

|

|

Co

[| : JIDE l
|

|

|

|

Client Web app

3

JSON
JavaSeript/ingularjs

"Microservice 3

[

| wen A : oL

: m a | Azure

[| Databass
-

e ————— —

Figure 5-15: Caching in a cloud native app

In the previous figure, note how the cache is independent of and shared by the
microservices. In this scenario, the cache is invoked by the APl Gateway. As discussed in
chapter 4, the gateway serves as a front end for all incoming requests. The distributed
cache increases system responsiveness by returning cached data whenever possible.
Additionally, separating the cache from the services allows the cache to scale up or out
independently to meet increased traffic demands.

The previous figure presents a common caching pattern known as the cache-aside
pattern. For an incoming request, you first query the cache (step #1) for a response. If
found, the data is returned immediately. If the data doesn't exist in the cache (known as
a cache miss @), it's retrieved from a local database in a downstream service (step #2).
It's then written to the cache for future requests (step #3), and returned to the caller.
Care must be taken to periodically evict cached data so that the system remains timely
and consistent.

https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside
https://learn.microsoft.com/en-us/azure/architecture/patterns/cache-aside
https://www.techopedia.com/definition/6308/cache-miss
https://www.techopedia.com/definition/6308/cache-miss

As a shared cache grows, it might prove beneficial to partition its data across multiple
nodes. Doing so can help minimize contention and improve scalability. Many Caching
services support the ability to dynamically add and remove nodes and rebalance data
across partitions. This approach typically involves clustering. Clustering exposes a
collection of federated nodes as a seamless, single cache. Internally, however, the data is
dispersed across the nodes following a predefined distribution strategy that balances
the load evenly.

Azure Cache for Redis

Azure Cache for Redis@ is a secure data caching and messaging broker service, fully
managed by Microsoft. Consumed as a Platform as a Service (PaaS) offering, it provides
high throughput and low-latency access to data. The service is accessible to any
application within or outside of Azure.

The Azure Cache for Redis service manages access to open-source Redis servers hosted
across Azure data centers. The service acts as a facade providing management, access
control, and security. The service natively supports a rich set of data structures, including
strings, hashes, lists, and sets. If your application already uses Redis, it will work as-is
with Azure Cache for Redis.

Azure Cache for Redis is more than a simple cache server. It can support a number of

scenarios to enhance a microservices architecture:

e An in-memory data store
e A distributed non-relational database
e A message broker

e A configuration or discovery server

For advanced scenarios, a copy of the cached data can be persisted to disk. If a
catastrophic event disables both the primary and replica caches, the cache is

reconstructed from the most recent snapshot.

Azure Redis Cache is available across a number of predefined configurations and pricing
tiers. The Premium tier features many enterprise-level features such as clustering, data

persistence, geo-replication, and virtual-network isolation.

https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cache/
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-how-to-premium-persistence
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-overview#service-tiers

Elasticsearch in a cloud-native app

Article » 05/12/2022

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Elasticsearch is a distributed search and analytics system that enables complex search

capabilities across diverse types of data. It's open source and widely popular. Consider

how the following companies integrate Elasticsearch into their application:

e Wikipedia @ for full-text and incremental (search as you type) searching.
e GitHub® to index and expose over 8 million code repositories.

e Docker# for making its container library discoverable.

Elasticsearch is built on top of the Apache Lucene & full-text search engine. Lucene

provides high-performance document indexing and querying. It indexes data with an

inverted indexing scheme — instead of mapping pages to keywords, it maps keywords to

pages just like a glossary at the end of a book. Lucene has powerful query syntax

capabilities and can query data by:

e Term (a full word)

e Prefix (starts-with word)

e Wildcard (using "*" or "?" filters)

e Phrase (a sequence of text in a document)

e Boolean value (complex searches combining queries)

While Lucene provides low-level plumbing for searching, Elasticsearch provides the

server that sits on top of Lucene. Elasticsearch adds higher-level functionality to simplify

https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://blog.wikimedia.org/2014/01/06/wikimedia-moving-to-elasticsearch/
https://www.elastic.co/customers/github
https://www.elastic.co/customers/github
https://www.elastic.co/customers/docker
https://www.elastic.co/customers/docker
https://lucene.apache.org/core/
https://lucene.apache.org/core/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

working Lucene, including a RESTful API to access Lucene's indexing and searching
functionality. It also provides a distributed infrastructure capable of massive scalability,
fault tolerance, and high availability.

For larger cloud-native applications with complex search requirements, Elasticsearch is
available as managed service in Azure. The Microsoft Azure Marketplace features
preconfigured templates which developers can use to deploy an Elasticsearch cluster on
Azure.

From the Microsoft Azure Marketplace, developers can use preconfigured templates
built to quickly deploy an Elasticsearch cluster on Azure. Using the Azure-managed
offering, you can deploy up to 50 data nodes, 20 coordinating nodes, and three

dedicated master nodes.

Summary

This chapter presented a detailed look at data in cloud-native systems. We started by
contrasting data storage in monolithic applications with data storage patterns in cloud-
native systems. We looked at data patterns implemented in cloud-native systems,
including cross-service queries, distributed transactions, and patterns to deal with high-
volume systems. We contrasted SQL with NoSQL data. We looked at data storage
options available in Azure that include both Microsoft-centric and open-source options.

Finally, we discussed caching and Elasticsearch in a cloud-native application.

References

e Command and Query Responsibility Segregation (CQRS) pattern

e Event Sourcing pattern

e Why isn't RDBMS Partition Tolerant in CAP Theorem and why is it Available? &
e Materialized View

e All you really need to know about open source databases (IBM blog)

e Compensating Transaction pattern

e Saga Pattern@

e Saga Patterns | How to implement business transactions using microservices @

e Compensating Transaction pattern

https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/patterns/event-sourcing
https://stackoverflow.com/questions/36404765/why-isnt-rdbms-partition-tolerant-in-cap-theorem-and-why-is-it-available
https://stackoverflow.com/questions/36404765/why-isnt-rdbms-partition-tolerant-in-cap-theorem-and-why-is-it-available
https://learn.microsoft.com/en-us/azure/architecture/patterns/materialized-view
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/saga.html
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://learn.microsoft.com/en-us/azure/architecture/patterns/compensating-transaction

e Getting Behind the 9-Ball: Cosmos DB Consistency Levels Explained &

e On RDBMS, NoSQL and NewSQL databases. Interview with John Ryan &
e SQL vs NoSQL vs NewSQL: The Full Comparison &

e DASH: Four Properties of Kubernetes-Native Databases @

e CockroachDB &

e TIDB®

e YugabyteDB &

e Vitess@

e Elasticsearch: The Definitive Guide &

e Introduction to Apache Lucene @

https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
https://blog.jeremylikness.com/blog/2018-03-23_getting-behind-the-9ball-cosmosdb-consistency-levels/
http://www.odbms.org/blog/2018/03/on-rdbms-nosql-and-newsql-databases-interview-with-john-ryan/
http://www.odbms.org/blog/2018/03/on-rdbms-nosql-and-newsql-databases-interview-with-john-ryan/
https://www.xenonstack.com/blog/sql-vs-nosql-vs-newsql/
https://www.xenonstack.com/blog/sql-vs-nosql-vs-newsql/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://thenewstack.io/dash-four-properties-of-kubernetes-native-databases/
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
https://pingcap.com/en/
https://pingcap.com/en/
https://www.yugabyte.com/
https://www.yugabyte.com/
https://vitess.io/
https://vitess.io/
https://shop.oreilly.com/product/0636920028505.do
https://shop.oreilly.com/product/0636920028505.do
https://www.baeldung.com/lucene
https://www.baeldung.com/lucene

Cloud-native resiliency

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Resiliency is the ability of your system to react to failure and still remain functional. It's
not about avoiding failure, but accepting failure and constructing your cloud-native
services to respond to it. You want to return to a fully functioning state quickly as
possible.

Unlike traditional monolithic applications, where everything runs together in a single

process, cloud-native systems embrace a distributed architecture as shown in Figure 6-1:

= =-— E - EE - S O S S S S S S S S S S . .

Back end I
I Ed @@= 30000 e e ——— N
(| o |
I I
ing Servi I
Backing Service | Microservice |
4 M 7 Document Database I
Backing Service
y .. I
"
—
- & I
= [—
- Message Broker I
Monitoring B)
Backing Service
Backing Service - I
4 ’
SN I
|
|
icroservice | @ I
Relational Database I
Backing Service

Figure 6-1. Distributed cloud-native environment

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

In the previous figure, each microservice and cloud-based backing service @ execute in a

separate process, across server infrastructure, communicating via network-based calls.
Operating in this environment, a service must be sensitive to many different challenges:

e Unexpected network latency - the time for a service request to travel to the
receiver and back.

e Transient faults - short-lived network connectivity errors.

e Blockage by a long-running synchronous operation.

e A host process that has crashed and is being restarted or moved.
e An overloaded microservice that can't respond for a short time.

e An in-flight orchestrator operation such as a rolling upgrade or moving a service

from one node to another.
e Hardware failures.

Cloud platforms can detect and mitigate many of these infrastructure issues. It may
restart, scale out, and even redistribute your service to a different node. However, to
take full advantage of this built-in protection, you must design your services to react to

it and thrive in this dynamic environment.

In the following sections, we'll explore defensive techniques that your service and

managed cloud resources can leverage to minimize downtime and disruption.

Previous m

https://12factor.net/backing-services
https://12factor.net/backing-services
https://learn.microsoft.com/en-us/azure/architecture/best-practices/transient-faults

Application resiliency patterns

Article « 02/16/2023

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

The first line of defense is application resiliency.

While you could invest considerable time writing your own resiliency framework, such

products already exist. PollyZ is a comprehensive .NET resilience and transient-fault-

handling library that allows developers to express resiliency policies in a fluent and

thread-safe manner. Polly targets applications built with either .NET Framework or .NET

7. The following table describes the resiliency features, called policies, available in the

Polly Library. They can be applied individually or grouped together.

Policy
Retry

Circuit
Breaker

Timeout

Bulkhead

Cache

. Expand table

Experience
Configures retry operations on designated operations.

Blocks requested operations for a predefined period when faults exceed a
configured threshold

Places limit on the duration for which a caller can wait for a response.

Constrains actions to fixed-size resource pool to prevent failing calls from
swamping a resource.

Stores responses automatically.

https://old.dotnetfoundation.org/projects/polly
https://old.dotnetfoundation.org/projects/polly
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Policy Experience

Fallback Defines structured behavior upon a failure.

Note how in the previous figure the resiliency policies apply to request messages,
whether coming from an external client or back-end service. The goal is to compensate
the request for a service that might be momentarily unavailable. These short-lived
interruptions typically manifest themselves with the HTTP status codes shown in the
following table.

.. Expand table

HTTP Status Code Cause

404 Not Found

408 Request timeout

429 Too many requests (you've most likely been throttled)
502 Bad gateway

503 Service unavailable

504 Gateway timeout

Question: Would you retry an HTTP Status Code of 403 - Forbidden? No. Here, the
system is functioning properly, but informing the caller that they aren't authorized to
perform the requested operation. Care must be taken to retry only those operations
caused by failures.

As recommended in Chapter 1, Microsoft developers constructing cloud-native
applications should target the .NET platform. Version 2.1 introduced the
HTTPClientFactory & library for creating HTTP Client instances for interacting with URL-
based resources. Superseding the original HTTPClient class, the factory class supports
many enhanced features, one of which is tight integration with the Polly resiliency
library. With it, you can easily define resiliency policies in the application Startup class to
handle partial failures and connectivity issues.

Next, let's expand on retry and circuit breaker patterns.

Retry pattern

In a distributed cloud-native environment, calls to services and cloud resources can fail

because of transient (short-lived) failures, which typically correct themselves after a brief

https://www.stevejgordon.co.uk/introduction-to-httpclientfactory-aspnetcore
https://www.stevejgordon.co.uk/introduction-to-httpclientfactory-aspnetcore
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-http-call-retries-exponential-backoff-polly

period of time. Implementing a retry strategy helps a cloud-native service mitigate these

scenarios.

The Retry pattern enables a service to retry a failed request operation a (configurable)

number of times with an exponentially increasing wait time. Figure 6-2 shows a retry in

action.

| Backend

[Retries = 4
Sl Duration = 2 sec

Resiliency Configuration

Figure 6-2. Retry pattern in action

In the previous figure, a retry pattern has been implemented for a request operation. It's
configured to allow up to four retries before failing with a backoff interval (wait time)

starting at two seconds, which exponentially doubles for each subsequent attempt.

e The first invocation fails and returns an HTTP status code of 500. The application
waits for two seconds and retries the call.

e The second invocation also fails and returns an HTTP status code of 500. The
application now doubles the backoff interval to four seconds and retries the call.

e Finally, the third call succeeds.

¢ In this scenario, the retry operation would have attempted up to four retries while
doubling the backoff duration before failing the call.

e Had the 4th retry attempt failed, a fallback policy would be invoked to gracefully
handle the problem.

It's important to increase the backoff period before retrying the call to allow the service
time to self-correct. It's a best practice to implement an exponentially increasing backoff

(doubling the period on each retry) to allow adequate correction time.

Circuit breaker pattern

https://learn.microsoft.com/en-us/azure/architecture/patterns/retry

While the retry pattern can help salvage a request entangled in a partial failure, there
are situations where failures can be caused by unanticipated events that will require
longer periods of time to resolve. These faults can range in severity from a partial loss of
connectivity to the complete failure of a service. In these situations, it's pointless for an
application to continually retry an operation that is unlikely to succeed.

To make things worse, executing continual retry operations on a non-responsive service
can move you into a self-imposed denial of service scenario where you flood your
service with continual calls exhausting resources such as memory, threads and database

connections, causing failure in unrelated parts of the system that use the same
resources.

In these situations, it would be preferable for the operation to fail immediately and only
attempt to invoke the service if it's likely to succeed.

The Circuit Breaker pattern can prevent an application from repeatedly trying to execute
an operation that's likely to fail. After a pre-defined number of failed calls, it blocks all
traffic to the service. Periodically, it will allow a trial call to determine whether the fault

has resolved. Figure 6-3 shows the Circuit Breaker pattern in action.

I EEE EEE I I IS B S B B B B B B B B B e B O e oy

| Backend
Retries =4 I
[Curation = 2 sec
‘.-"' ExceptionsAllowed = 100 I
_.-" CheckCircuit = 30 seconds
s Resiliency Configuration I
i (2 D I
,. [, —, Y :
I P ~, rrnnnan 500 ST \
ey | WL e I
e | e |
e O —— 1 ' | fm |
. A - 1 4729 aan | |
» Y | APIGateway C « >'l'| Microservice | I
E—— | R w |0 i S
Client SPA Web app
I Polly Resiliency PEIT 408 uansnsnnnnnnas
Framework
I T T T ~ T 408 sarnnnnnsnnas
{ I I
I I J
Browser I | : Circuit Open
HTML l eb App | Calls to microservice fail immediately I
|
I M 4 Allow one call every 30 seconds to check state I

L—————————————————————

Figure 6-3. Circuit breaker pattern in action

In the previous figure, a Circuit Breaker pattern has been added to the original retry
pattern. Note how after 100 failed requests, the circuit breakers opens and no longer
allows calls to the service. The CheckCircuit value, set at 30 seconds, specifies how often
the library allows one request to proceed to the service. If that call succeeds, the circuit
closes and the service is once again available to traffic.

Keep in mind that the intent of the Circuit Breaker pattern is different than that of the
Retry pattern. The Retry pattern enables an application to retry an operation in the

https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker

expectation that it will succeed. The Circuit Breaker pattern prevents an application from
doing an operation that is likely to fail. Typically, an application will combine these two
patterns by using the Retry pattern to invoke an operation through a circuit breaker.

Testing for resiliency

Testing for resiliency cannot always be done the same way that you test application
functionality (by running unit tests, integration tests, and so on). Instead, you must test
how the end-to-end workload performs under failure conditions, which only occur
intermittently. For example: inject failures by crashing processes, expired certificates,
make dependent services unavailable etc. Frameworks like chaos-monkey @ can be used
for such chaos testing.

Application resiliency is a must for handling problematic requested operations. But, it's
only half of the story. Next, we cover resiliency features available in the Azure cloud.

Previous m

https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey

Azure platform resiliency

Article » 06/10/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Building a reliable application in the cloud is different from traditional on-premises
application development. While historically you purchased higher-end hardware to scale
up, in a cloud environment you scale out. Instead of trying to prevent failures, the goal is
to minimize their effects and keep the system stable.

That said, reliable cloud applications display distinct characteristics:

e They're resilient, recover gracefully from problems, and continue to function.
e They're highly available (HA) and run as designed in a healthy state with no

significant downtime.

Understanding how these characteristics work together - and how they affect cost - is
essential to building a reliable cloud-native application. We'll next look at ways that you
can build resiliency and availability into your cloud-native applications leveraging

features from the Azure cloud.

Design with resiliency

We've said resiliency enables your application to react to failure and still remain
functional. The whitepaper, Resilience in Azure whitepaper @, provides guidance for

achieving resilience in the Azure platform. Here are some key recommendations:

https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

e Hardware failure. Build redundancy into the application by deploying components
across different fault domains. For example, ensure that Azure VMs are placed in
different racks by using Availability Sets.

e Datacenter failure. Build redundancy into the application with fault isolation zones
across datacenters. For example, ensure that Azure VMs are placed in different

fault-isolated datacenters by using Azure Availability Zones.

e Regional failure. Replicate the data and components into another region so that
applications can be quickly recovered. For example, use Azure Site Recovery to

replicate Azure VMs to another Azure region.

e Heavy load. Load balance across instances to handle spikes in usage. For example,

put two or more Azure VMs behind a load balancer to distribute traffic to all VMs.

e Accidental data deletion or corruption. Back up data so it can be restored if there's
any deletion or corruption. For example, use Azure Backup to periodically back up

your Azure VMs.

Design with redundancy

Failures vary in scope of impact. A hardware failure, such as a failed disk, can affect a
single node in a cluster. A failed network switch could affect an entire server rack. Less
common failures, such as loss of power, could disrupt a whole datacenter. Rarely, an

entire region becomes unavailable.

Redundancy is one way to provide application resilience. The exact level of redundancy
needed depends upon your business requirements and will affect both the cost and
complexity of your system. For example, a multi-region deployment is more expensive
and more complex to manage than a single-region deployment. You'll need operational
procedures to manage failover and failback. The additional cost and complexity might
be justified for some business scenarios, but not others.

To architect redundancy, you need to identify the critical paths in your application, and
then determine if there's redundancy at each point in the path? If a subsystem should
fail, will the application fail over to something else? Finally, you need a clear
understanding of those features built into the Azure cloud platform that you can
leverage to meet your redundancy requirements. Here are recommendations for

architecting redundancy:

e Deploy multiple instances of services. If your application depends on a single
instance of a service, it creates a single point of failure. Provisioning multiple

instances improves both resiliency and scalability. When hosting in Azure

https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/redundancy

Kubernetes Service, you can declaratively configure redundant instances (replica
sets) in the Kubernetes manifest file. The replica count value can be managed
programmatically, in the portal, or through autoscaling features.

Leveraging a load balancer. Load-balancing distributes your application’s requests
to healthy service instances and automatically removes unhealthy instances from
rotation. When deploying to Kubernetes, load balancing can be specified in the
Kubernetes manifest file in the Services section.

Plan for multiregion deployment. If you deploy your application to a single region,
and that region becomes unavailable, your application will also become
unavailable. This may be unacceptable under the terms of your application's
service level agreements. Instead, consider deploying your application and its
services across multiple regions. For example, an Azure Kubernetes Service (AKS)
cluster is deployed to a single region. To protect your system from a regional
failure, you might deploy your application to multiple AKS clusters across different
regions and use the Paired Regions feature to coordinate platform updates and

prioritize recovery efforts.

Enable geo-replication. Geo-replication for services such as Azure SQL Database
and Cosmos DB will create secondary replicas of your data across multiple regions.
While both services will automatically replicate data within the same region, geo-
replication protects you against a regional outage by enabling you to fail over to a
secondary region. Another best practice for geo-replication centers around storing
container images. To deploy a service in AKS, you need to store and pull the image
from a repository. Azure Container Registry integrates with AKS and can securely
store container images. To improve performance and availability, consider geo-
replicating your images to a registry in each region where you have an AKS cluster.
Each AKS cluster then pulls container images from the local container registry in its
region as shown in Figure 6-4:

e L
Omimiw i
e LR

& e (D

b * @cCanada :
mmip P Central Ll] urope
v B 2 -
& o &

@ West US ®:--Us

1
3

Figure 6-4. Replicated resources across regions

https://learn.microsoft.com/en-us/azure/virtual-machines/regions#region-pairs
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-active-geo-replication

e Implement a DNS traffic load balancer. Azure Traffic Manager provides high-
availability for critical applications by load-balancing at the DNS level. It can route
traffic to different regions based on geography, cluster response time, and even
application endpoint health. For example, Azure Traffic Manager can direct
customers to the closest AKS cluster and application instance. If you have multiple
AKS clusters in different regions, use Traffic Manager to control how traffic flows to

the applications that run in each cluster. Figure 6-5 shows this scenario.

Azure
Iraffic Manager

%

Primary Region (1)

Metwork Appliances

Primary Region (2)

Metwork Appliances

Hmrk <."'> (‘.‘.>
Load Balancer Load Balancer
AKS AKS
nirasuuciure .:. I. .
Infrastruct >t o
¥] 1)

Figure 6-5. AKS and Azure Traffic Manager

Design for scalability

The cloud thrives on scaling. The ability to increase/decrease system resources to
address increasing/decreasing system load is a key tenet of the Azure cloud. But, to
effectively scale an application, you need an understanding of the scaling features of
each Azure service that you include in your application. Here are recommendations for
effectively implementing scaling in your system.

e Design for scaling. An application must be designed for scaling. To start, services
should be stateless so that requests can be routed to any instance. Having
stateless services also means that adding or removing an instance doesn't

adversely impact current users.

e Partition workloads. Decomposing domains into independent, self-contained
microservices enable each service to scale independently of others. Typically,
services will have different scalability needs and requirements. Partitioning enables

https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview

you to scale only what needs to be scaled without the unnecessary cost of scaling
an entire application.

e favor scale-out. Cloud-based applications favor scaling out resources as opposed
to scaling up. Scaling out (also known as horizontal scaling) involves adding more
service resources to an existing system to meet and share a desired level of
performance. Scaling up (also known as vertical scaling) involves replacing existing
resources with more powerful hardware (more disk, memory, and processing
cores). Scaling out can be invoked automatically with the autoscaling features
available in some Azure cloud resources. Scaling out across multiple resources also
adds redundancy to the overall system. Finally scaling up a single resource is
typically more expensive than scaling out across many smaller resources. Figure 6-
6 shows the two approaches:

Scale Up (vertical scaling) Scale Out (horizontal scaling)

Increase capacity by adding Increase capacity by adding resources
RAM/CPU/Disk to

asingle resource .+’

.
.
*
*
*
*
.
*
*
*
*
.
.
.
.
.
.
.
.
*
+
.
**
*

Figure 6-6. Scale up versus scale out

D 4

“

e Scale proportionally. When scaling a service, think in terms of resource sets. If you
were to dramatically scale out a specific service, what impact would that have on
back-end data stores, caches and dependent services? Some resources such as
Cosmos DB can scale out proportionally, while many others can't. You want to

ensure that you don't scale out a resource to a point where it will exhaust other
associated resources.

e Avoid dffinity. A best practice is to ensure a node doesn't require local affinity,
often referred to as a sticky session. A request should be able to route to any
instance. If you need to persist state, it should be saved to a distributed cache,
such as Azure Redis cache'.

e Take advantage of platform autoscaling features. Use built-in autoscaling features
whenever possible, rather than custom or third-party mechanisms. Where possible,
use scheduled scaling rules to ensure that resources are available without a startup
delay, but add reactive autoscaling to the rules as appropriate, to cope with
unexpected changes in demand. For more information, see Autoscaling guidance.

https://azure.microsoft.com/services/cache/
https://azure.microsoft.com/services/cache/
https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling

e Scale out aggressively. A final practice would be to scale out aggressively so that
you can quickly meet immediate spikes in traffic without losing business. And, then
scale in (that is, remove unneeded instances) conservatively to keep the system
stable. A simple way to implement this is to set the cool down period, which is the
time to wait between scaling operations, to five minutes for adding resources and

up to 15 minutes for removing instances.

Built-in retry in services

We encouraged the best practice of implementing programmatic retry operations in an
earlier section. Keep in mind that many Azure services and their corresponding client
SDKs also include retry mechanisms. The following list summarizes retry features in the

many of the Azure services that are discussed in this book:

e Azure Cosmos DB. The DocumentClient class from the client APl automatically
retries failed attempts. The number of retries and maximum wait time are
configurable. Exceptions thrown by the client API are either requests that exceed
the retry policy or non-transient errors.

e Azure Redis Cache. The Redis StackExchange client uses a connection manager
class that includes retries on failed attempts. The number of retries, specific retry

policy and wait time are all configurable.

e Azure Service Bus. The Service Bus client exposes a RetryPolicy class that can be
configured with a back-off interval, retry count, and TerminationTimeBuffer, which
specifies the maximum time an operation can take. The default policy is nine
maximum retry attempts with a 30-second backoff period between attempts.

e Azure SQL Database. Retry support is provided when using the Entity Framework
Core library.

e Azure Storage. The storage client library support retry operations. The strategies
vary across Azure storage tables, blobs, and queues. As well, alternate retries
switch between primary and secondary storage services locations when the geo-
redundancy feature is enabled.

e Azure Event Hubs. The Event Hub client library features a RetryPolicy property,
which includes a configurable exponential backoff feature.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.documents.client.documentclient
https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.retrypolicy
https://learn.microsoft.com/en-us/dotnet/api/microsoft.servicebus.retryexponential.terminationtimebuffer
https://learn.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency
https://learn.microsoft.com/en-us/ef/core/miscellaneous/connection-resiliency

Resilient communications

Article « 11/29/2022

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Throughout this book, we've embraced a microservice-based architectural approach.

While such an architecture provides important benefits, it presents many challenges:

Out-of-process network communication. Each microservice communicates over a
network protocol that introduces network congestion, latency, and transient faults.

Service discovery. How do microservices discover and communicate with each other

when running across a cluster of machines with their own IP addresses and ports?
Resiliency. How do you manage short-lived failures and keep the system stable?

Load balancing. How does inbound traffic get distributed across multiple instances

of a microservice?

Security. How are security concerns such as transport-level encryption and

certificate management enforced?

Distributed Monitoring. - How do you correlate and capture traceability and

monitoring for a single request across multiple consuming microservices?

You can address these concerns with different libraries and frameworks, but the

implementation can be expensive, complex, and time-consuming. You also end up with

infrastructure concerns coupled to business logic.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Service mesh

A better approach is an evolving technology entitled Service Mesh. A service mesh @ is a
configurable infrastructure layer with built-in capabilities to handle service
communication and the other challenges mentioned above. It decouples these concerns
by moving them into a service proxy. The proxy is deployed into a separate process
(called a sidecar) to provide isolation from business code. However, the sidecar is linked
to the service - it's created with it and shares its lifecycle. Figure 6-7 shows this scenario.

F
i Cloud I
: I
I I
: I
I I
: I
I I
: I
I I
: I
I I
: I
-_— _— _— _— _— _— _— - _— - _— - _— - _— - _— - - - - - - - _— I
Figure 6-7. Service mesh with a side car
In the previous figure, note how the proxy intercepts and manages communication
among the microservices and the cluster.
A service mesh is logically split into two disparate components: A data plane & and
control plane . Figure 6-8 shows these components and their responsibilities.
Management
Control Plane Monitoring
- - - Provisioning
L]] L]
- = = Scaling
1]]
" (] | . |
\ 2NN \ A A S
Ci# Java Golang
Discovery
‘ -ﬂﬁ ﬂm Health Che-:ll-;
L] Sidecar Proxy] Sidecar Proxy Sidecar Proxy Load Balancing
—] AuthM/AuthZ
Data Plane

Figure 6-8. Service mesh control and data plane

https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc
https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc

Once configured, a service mesh is highly functional. It can retrieve a corresponding
pool of instances from a service discovery endpoint. The mesh can then send a request
to a specific instance, recording the latency and response type of the result. A mesh can
choose the instance most likely to return a fast response based on many factors,
including its observed latency for recent requests.

If an instance is unresponsive or fails, the mesh will retry the request on another
instance. If it returns errors, a mesh will evict the instance from the load-balancing pool
and restate it after it heals. If a request times out, a mesh can fail and then retry the
request. A mesh captures and emits metrics and distributed tracing to a centralized
metrics system.

Istio and Envoy

While a few service mesh options currently exist, Istio @ is the most popular at the time
of this writing. Istio is a joint venture from IBM, Google, and Lyft. It's an open-source
offering that can be integrated into a new or existing distributed application. The
technology provides a consistent and complete solution to secure, connect, and monitor
microservices. Its features include:

e Secure service-to-service communication in a cluster with strong identity-based
authentication and authorization.

e Automatic load balancing for HTTP, gRPC &', WebSocket, and TCP traffic.

e Fine-grained control of traffic behavior with rich routing rules, retries, failovers, and
fault injection.

e A pluggable policy layer and configuration APl supporting access controls, rate
limits, and quotas.

e Automatic metrics, logs, and traces for all traffic within a cluster, including cluster
ingress and egress.

A key component for an Istio implementation is a proxy service entitled the Envoy
proxy . It runs alongside each service and provides a platform-agnostic foundation for
the following features:

e Dynamic service discovery.

e Load balancing.

e TLS termination.

e HTTP and gRPC proxies.

e Circuit breaker resiliency.

e Health checks.

e Rolling updates with canary @ deployments.

https://istio.io/docs/concepts/what-is-istio/
https://istio.io/docs/concepts/what-is-istio/
https://grpc.io/
https://grpc.io/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

As previously discussed, Envoy is deployed as a sidecar to each microservice in the

cluster.

Integration with Azure Kubernetes Services

The Azure cloud embraces Istio and provides direct support for it within Azure
Kubernetes Services. The following links can help you get started:

e |Installing Istio in AKS
e Using AKS and Istio

References
e Polly
e Retry pattern
e Circuit Breaker pattern
e Resilience in Azure whitepaper @
e network latency &
e Redundancy
e geo-replication
e Azure Traffic Manager
e Autoscaling guidance
e |stiod

e Envoy proxy @

https://learn.microsoft.com/en-us/azure/aks/istio-install
https://learn.microsoft.com/en-us/azure/aks/istio-scenario-routing
https://old.dotnetfoundation.org/projects/polly
https://old.dotnetfoundation.org/projects/polly
https://learn.microsoft.com/en-us/azure/architecture/patterns/retry
https://learn.microsoft.com/en-us/azure/architecture/patterns/circuit-breaker
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/resilience-in-azure-whitepaper/Resilience%20in%20Azure.pdf
https://www.techopedia.com/definition/8553/network-latency
https://www.techopedia.com/definition/8553/network-latency
https://learn.microsoft.com/en-us/azure/architecture/guide/design-principles/redundancy
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-active-geo-replication
https://learn.microsoft.com/en-us/azure/traffic-manager/traffic-manager-overview
https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://istio.io/docs/concepts/what-is-istio/
https://istio.io/docs/concepts/what-is-istio/
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy
https://www.envoyproxy.io/docs/envoy/latest/intro/what_is_envoy

Monitoring and health

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Microservices and cloud-native applications go hand in hand with good DevOps
practices. DevOps is many things to many people but perhaps one of the better
definitions comes from cloud advocate and DevOps evangelist Donovan Brown:

"DevOps is the union of people, process, and products to enable continuous delivery of

value to our end users."

Unfortunately, with terse definitions, there's always room to say more things. One of the
key components of DevOps is ensuring that the applications running in production are
functioning properly and efficiently. To gauge the health of the application in
production, it's necessary to monitor the various logs and metrics being produced from
the servers, hosts, and the application proper. The number of different services running
in support of a cloud-native application makes monitoring the health of individual
components and the application as a whole a critical challenge.

Previous m

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Observability patterns

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Just as patterns have been developed to aid in the layout of code in applications, there
are patterns for operating applications in a reliable way. Three useful patterns in

maintaining applications have emerged: logging, monitoring, and alerts.

When to use logging

No matter how careful we are, applications almost always behave in unexpected ways in
production. When users report problems with an application, it's useful to be able to see
what was going on with the app when the problem occurred. One of the most tried and
true ways of capturing information about what an application is doing while it's running
is to have the application write down what it's doing. This process is known as logging.
Anytime failures or problems occur in production, the goal should be to reproduce the
conditions under which the failures occurred, in a non-production environment. Having
good logging in place provides a roadmap for developers to follow in order to duplicate

problems in an environment that can be tested and experimented with.

Challenges when logging with cloud-native applications

In traditional applications, log files are typically stored on the local machine. In fact, on

Unix-like operating systems, there's a folder structure defined to hold any logs, typically

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

under /var/log.

Monolithic App

/"~ ASP.NET MVC app
Ul Endpoints

Business Logic

Data Access Logic

[
|
|
|
|
|
|
|
|
|
|
|
|
|
\

Logfile /

-

L——————————

Figure 7-1. Logging to a file in a monolithic app.

The usefulness of logging to a flat file on a single machine is vastly reduced in a cloud
environment. Applications producing logs may not have access to the local disk or the
local disk may be highly transient as containers are shuffled around physical machines.
Even simple scaling up of monolithic applications across multiple nodes can make it

challenging to locate the appropriate file-based log file.

Monolithic App (scaled out)

- ~ - ~

/" ASPNETMVCapp N , ASPNETMVCapp ° ,” ASP.NET MVCapp |

Ul Endpoints Ul Endpoints Ul Endpoints

Business Logic Business Logic
A

Data Access Logic Data Access Logic Data Access Logic

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Logfile yi

Logfile i \ Logfile J

Figure 7-2. Logging to files in a scaled monolithic app.

Cloud-native applications developed using a microservices architecture also pose some
challenges for file-based loggers. User requests may now span multiple services that are

run on different machines and may include serverless functions with no access to a local

file system at all. It would be very challenging to correlate the logs from a user or a

session across these many services and machines.

Local Log File per Service

| Back-end microservices
e N S ame e
| Microservice 1 Vool Microservice 4
Web API | : Web API :
|
[O] — Kol _
container | | contamer_ }
________ lLocallodfile/ N Local logfile,
(Ul Service ” Microservice2
- |
Web API |
RCllentt | {] :
eques | A I l '
| container container :

e Locallogile/

—_———— e e

- . -
Microservice 3 \|
Web API |
|
el
container :

Local logfile /

- S S S S] - - - -
Ve
-
o
Il
S
o
Q
=h
2

Figure 7-3. Logging to local files in a microservices app.

Finally, the number of users in some cloud-native applications is high. Imagine that each

user generates a hundred lines of log messages when they log into an application. In
isolation, that is manageable, but multiply that over 100,000 users and the volume of

logs becomes large enough that specialized tools are needed to support effective use of

the logs.

Logging in cloud-native applications

Every programming language has tooling that permits writing logs, and typically the
overhead for writing these logs is low. Many of the logging libraries provide logging
different kinds of criticalities, which can be tuned at run time. For instance, the Serilog
library @ is a popular structured logging library for .NET that provides the following
logging levels:

e Verbose

e Debug

e Information
e Warning

e Error

e Fatal

https://serilog.net/
https://serilog.net/
https://serilog.net/

These different log levels provide granularity in logging. When the application is
functioning properly in production, it may be configured to only log important
messages. When the application is misbehaving, then the log level can be increased so

more verbose logs are gathered. This balances performance against ease of debugging.

The high performance of logging tools and the tunability of verbosity should encourage
developers to log frequently. Many favor a pattern of logging the entry and exit of each
method. This approach may sound like overkill, but it's infrequent that developers will
wish for less logging. In fact, it's not uncommon to perform deployments for the sole
purpose of adding logging around a problematic method. Err on the side of too much
logging and not on too little. Some tools can be used to automatically provide this kind
of logging.

Because of the challenges associated with using file-based logs in cloud-native apps,
centralized logs are preferred. Logs are collected by the applications and shipped to a
central logging application which indexes and stores the logs. This class of system can
ingest tens of gigabytes of logs every day.

It's also helpful to follow some standard practices when building logging that spans
many services. For instance, generating a correlation ID®' at the start of a lengthy
interaction, and then logging it in each message that is related to that interaction,
makes it easier to search for all related messages. One need only find a single message
and extract the correlation ID to find all the related messages. Another example is
ensuring that the log format is the same for every service, whatever the language or
logging library it uses. This standardization makes reading logs much easier. Figure 7-4
demonstrates how a microservices architecture can leverage centralized logging as part
of its workflow.

https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/
https://blog.rapid7.com/2016/12/23/the-value-of-correlation-ids/

Implementing centralized logging

Backend - ™

v

Database as | |
|

. cache : |
- |
/ Catalog microservice '

r SN S - -

! Web AP Service g .. . I
|

|

|

|

|

I |

| UpdatePrice 4] ; \
I I

|

|

|

Event bus
command PriceUpdated event

|(Pub||sh/Subscr|be channel) |

|
} (Publish action) ! DA PriceUpdated event > Other related features I
! DB update o ! / ________________________________ N
i S /” Additional microservices... |
! Database Log with id ! | i
\ Vi ! [’] ' 8 Database ! |
T - Centralized L Service 2 N
I
Log Store | Log with id !

@ Generate correlation id
© Log with id
© Send log statements to central log store

Figure 7-4. Logs from various sources are ingested into a centralized log store.

Challenges with detecting and responding to
potential app health issues

Some applications aren't mission critical. Maybe they're only used internally, and when a
problem occurs, the user can contact the team responsible and the application can be
restarted. However, customers often have higher expectations for the applications they
consume. You should know when problems occur with your application before users do,
or before users notify you. Otherwise, the first you know about a problem may be when
you notice an angry deluge of social media posts deriding your application or even your
organization.

Some scenarios you may need to consider include:

e One service in your application keeps failing and restarting, resulting in
intermittent slow responses.

e At some times of the day, your application's response time is slow.

e After a recent deployment, load on the database has tripled.

Implemented properly, monitoring can let you know about conditions that will lead to
problems, letting you address underlying conditions before they result in any significant

user impact.

Monitoring cloud-native apps

Some centralized logging systems take on an additional role of collecting telemetry
outside of pure logs. They can collect metrics, such as time to run a database query,
average response time from a web server, and even CPU load averages and memory
pressure as reported by the operating system. In conjunction with the logs, these
systems can provide a holistic view of the health of nodes in the system and the

application as a whole.

The metric-gathering capabilities of the monitoring tools can also be fed manually from
within the application. Business flows that are of particular interest such as new users
signing up or orders being placed, may be instrumented such that they increment a
counter in the central monitoring system. This aspect unlocks the monitoring tools to

not only monitor the health of the application but the health of the business.

Queries can be constructed in the log aggregation tools to look for certain statistics or
patterns, which can then be displayed in graphical form, on custom dashboards.
Frequently, teams will invest in large, wall-mounted displays that rotate through the
statistics related to an application. This way, it's simple to see the problems as they

OocCcur.

Cloud-native monitoring tools provide real-time telemetry and insight into apps
regardless of whether they're single-process monolithic applications or distributed
microservice architectures. They include tools that allow collection of data from the app
as well as tools for querying and displaying information about the app's health.

Challenges with reacting to critical problems in
cloud-native apps

If you need to react to problems with your application, you need some way to alert the
right personnel. This is the third cloud-native application observability pattern and
depends on logging and monitoring. Your application needs to have logging in place to
allow problems to be diagnosed, and in some cases to feed into monitoring tools. It
needs monitoring to aggregate application metrics and health data in one place. Once
this has been established, rules can be created that will trigger alerts when certain
metrics fall outside of acceptable levels.

Generally, alerts are layered on top of monitoring such that certain conditions trigger
appropriate alerts to notify team members of urgent problems. Some scenarios that
may require alerts include:

e One of your application's services is not responding after 1 minute of downtime.
e Your application is returning unsuccessful HTTP responses to more than 1% of

requests.

e Your application's average response time for key endpoints exceeds 2000 ms.

Alerts in cloud-native apps

You can craft queries against the monitoring tools to look for known failure conditions.
For instance, queries could search through the incoming logs for indications of HTTP
status code 500, which indicates a problem on a web server. As soon as one of these is
detected, then an e-mail or an SMS could be sent to the owner of the originating service
who can begin to investigate.

Typically, though, a single 500 error isn't enough to determine that a problem has
occurred. It could mean that a user mistyped their password or entered some
malformed data. The alert queries can be crafted to only fire when a larger than average
number of 500 errors are detected.

One of the most damaging patterns in alerting is to fire too many alerts for humans to
investigate. Service owners will rapidly become desensitized to errors that they've
previously investigated and found to be benign. Then, when true errors occur, they'll be
lost in the noise of hundreds of false positives. The parable of the Boy Who Cried Wolf &
is frequently told to children to warn them of this very danger. It's important to ensure
that the alerts that do fire are indicative of a real problem.

https://en.wikipedia.org/wiki/The_Boy_Who_Cried_Wolf
https://en.wikipedia.org/wiki/The_Boy_Who_Cried_Wolf

Logging with Elastic Stack

Article < 11/08/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

There are many good centralized logging tools and they vary in cost from free, open-
source tools, to more expensive options. In many cases, the free tools are as good as or
better than the paid offerings. One such tool is a combination of three open-source
components: Elasticsearch, Logstash, and Kibana.

Collectively these tools are known as the Elastic Stack or ELK stack.

Elastic Stack

The Elastic Stack is a powerful option for gathering information from a Kubernetes
cluster. Kubernetes supports sending logs to an Elasticsearch endpoint, and for the most
part, all you need to get started is to set the environment variables as shown in Figure 7-
5:

kubernetes

KUBE_LOGGING DESTINATION=elasticsearch
KUBE_ENABLE_NODE_LOGGING=true

Figure 7-5. Configuration variables for Kubernetes

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

This step will install Elasticsearch on the cluster and target sending all the cluster logs to

88,833 hits New Save Open Share <£ Last 15 minutes ¥
Search... (e.g. status:200 AND extension:PHP) Uses lucene query syntax B

Add a filter 4

eshops-* M March 19th 2019, 15:33:34.099 - March 19th 2019, 15:48:34.089 — Auto

Selected Fields

wodRRRERN || T

@timestamp

@vers 3
@version @timestamp per 30 seconc

_id Time _source

_index ~ March 19th 2019, 15:48:32.081 @yersjon: 1 host: 172.21.0.9 headers.http_x_ms_request_root_id: 00001111-222232aa3333bb
bb4444 headers.content_type: application/json; charset=utf-8
headers.http_x_ms_request_id: 00001111-2222aaaa3333bbbb4444, headers.request_path: /

headers.http_version: HTTP/1.1 headers.request_method: POST headers.http_request_id:
elevel | 00D01111-2222332a3333bbbb4444, headers.http_hest: Togstash:8080 headers.request_uri: /

e.MessageTempl... c s il h

Figure 7-6. An example of a Kibana dashboard showing the results of a query against

logs that are ingested from Kubernetes

For more information about configuration, see Configure logging (Kibana) .

What are the advantages of Elastic Stack?

Elastic Stack provides centralized logging in a low-cost, scalable, cloud-friendly manner.
Its user interface streamlines data analysis so you can spend your time gleaning insights
from your data instead of fighting with a clunky interface. It supports a wide variety of
inputs so as your distributed application spans more and different kinds of services, you
can expect to continue to be able to feed log and metric data into the system. The
Elastic Stack also supports fast searches even across large data sets, making it possible
even for large applications to log detailed data and still be able to have visibility into it

in a performant fashion.

Logstash

The first component is Logstash@'. This tool is used to gather log information from a
large variety of different sources. For instance, Logstash can read logs from disk and also
receive messages from logging libraries like Serilog@'. Logstash can do some basic
filtering and expansion on the logs as they arrive. For instance, if your logs contain IP
addresses then Logstash may be configured to do a geographical lookup and obtain a

country/region or even city of origin for that message.

https://www.elastic.co/guide/en/kibana/current/logging-configuration.html
https://www.elastic.co/guide/en/kibana/current/logging-configuration.html
https://www.elastic.co/products/logstash
https://www.elastic.co/products/logstash
https://serilog.net/
https://serilog.net/

Serilog is a logging library for .NET languages, which allows for parameterized logging.
Instead of generating a textual log message that embeds fields, parameters are kept
separate. This library allows for more intelligent filtering and searching. A sample Serilog

configuration for writing to Logstash appears in Figure 7-7.

C#

var log = new LoggerConfiguration()
.WriteTo.Http("http://localhost:8080")
.CreatelLogger();

Figure 7-7. Serilog config for writing log information directly to logstash over HTTP

Logstash would use a configuration like the one shown in Figure 7-8.

input {
http {
#default host ©.0.0.0:8080
codec => json
}
}
output {

elasticsearch {
hosts => "elasticsearch:9200"
index=>"sales-%{+xxxx.ww}"

Figure 7-8. A Logstash configuration for consuming logs from Serilog

For scenarios where extensive log manipulation isn't needed there's an alternative to
Logstash known as Beats . Beats is a family of tools that can gather a wide variety of
data from logs to network data and uptime information. Many applications will use both

Logstash and Beats.

Once the logs have been gathered by Logstash, it needs somewhere to put them. While
Logstash supports many different outputs, one of the more exciting ones is
Elasticsearch.

Elasticsearch

Elasticsearch is a powerful search engine that can index logs as they arrive. It makes
running queries against the logs quick. Elasticsearch can handle huge quantities of logs

https://www.elastic.co/products/beats
https://www.elastic.co/products/beats

and, in extreme cases, can be scaled out across many nodes.

Log messages that have been crafted to contain parameters or that have had
parameters split from them through Logstash processing, can be queried directly as

Elasticsearch preserves this information.

A query that searches for the top 10 pages visited by jill@example.com, appears in
Figure 7-9.

JSON

"query": {
"match": {
"user": "jill@example.com"

}
¥
"aggregations": {
"top_10 pages": {
"terms": {
"field": "page",
"size": 10
}
}
}

Figure 7-9. An Elasticsearch query for finding top 10 pages visited by a user

Visualizing information with Kibana web
dashboards

The final component of the stack is Kibana. This tool is used to provide interactive
visualizations in a web dashboard. Dashboards may be crafted even by users who are
non-technical. Most data that is resident in the Elasticsearch index, can be included in
the Kibana dashboards. Individual users may have different dashboard desires and
Kibana enables this customization through allowing user-specific dashboards.

Installing Elastic Stack on Azure

The Elastic stack can be installed on Azure in many ways. As always, it's possible to
provision virtual machines and install Elastic Stack on them directly. This option is
preferred by some experienced users as it offers the highest degree of customizability.
Deploying on infrastructure as a service introduces significant management overhead

forcing those who take that path to take ownership of all the tasks associated with

https://learn.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-elasticsearch

infrastructure as a service such as securing the machines and keeping up-to-date with

patches.

An option with less overhead is to make use of one of the many Docker containers on
which the Elastic Stack has already been configured. These containers can be dropped
into an existing Kubernetes cluster and run alongside application code. The sebp/elk @

container is a well-documented and tested Elastic Stack container.

Another option is a recently announced ELK-as-a-service offering &.

References

e Install Elastic Stack on Azure

https://elk-docker.readthedocs.io/
https://elk-docker.readthedocs.io/
https://devops.com/logz-io-unveils-azure-open-source-elk-monitoring-solution/
https://devops.com/logz-io-unveils-azure-open-source-elk-monitoring-solution/
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-elasticsearch

Monitoring in Azure Kubernetes
Services

Article « 04/07/2022

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

The built-in logging in Kubernetes is primitive. However, there are some great options
for getting the logs out of Kubernetes and into a place where they can be properly
analyzed. If you need to monitor your AKS clusters, configuring Elastic Stack for

Kubernetes is a great solution.

Azure Monitor for Containers

Azure Monitor for Containers supports consuming logs from not just Kubernetes but
also from other orchestration engines such as DC/OS, Docker Swarm, and Red Hat

OpenShift.

https://learn.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-overview
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

e g o . .

wm=a f S |
LRy Azure Azure
VM with agent) - :E: Service Fabric Container Service
— H'H - &
7 -
R . Azure Container) . 0]
s R > Monitoring N @ DC/0S % OPENSHIF_'I:‘_,//
[[|
' am ‘ —
N
.
. “ %] I'\\ @ v hb
_VM with agent /

\\ Portal VM with agent/.,
T

Azure
Figure 7-10. Consuming logs from various containers

Prometheus & is a popular open source metric monitoring solution. It is part of the
Cloud Native Compute Foundation. Typically, using Prometheus requires managing a
Prometheus server with its own store. However, Azure Monitor for Containers provides
direct integration with Prometheus metrics endpoints, so a separate server is not

required.

Log and metric information is gathered not just from the containers running in the
cluster but also from the cluster hosts themselves. It allows correlating log information

from the two making it much easier to track down an error.

Installing the log collectors differs on Windows and Linux clusters. But in both cases the
log collection is implemented as a Kubernetes DaemonSet ', meaning that the log
collector is run as a container on each of the nodes.

No matter which orchestrator or operating system is running the Azure Monitor
daemon, the log information is forwarded to the same Azure Monitor tools with which
users are familiar. This approach ensures a parallel experience in environments that mix

different log sources such as a hybrid Kubernetes/Azure Functions environment.

https://prometheus.io/
https://prometheus.io/
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-prometheus-integration
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/container-insights-prometheus-integration
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/containers#configure-a-log-analytics-windows-agent-for-kubernetes
https://learn.microsoft.com/en-us/azure/azure-monitor/insights/containers#configure-a-log-analytics-linux-agent-for-kubernetes
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

ners(contosoretail-it)

48 solution Settings #® Logs
g g

6/19 1308 - 2/27/19 13:08
CONTAINER IMAGES INVENTORY CONTAINERS STATUS CONTAINER PROCESS CONTAINER CPU PERFORMANCE CONTAINER MEMORY PERFORMANCE
Container Process Counts CPU Usage Over Time Memory Usage Over Time
60 39 7 300 |
Total Images Image Type Count Total Container Nodes Total Running Containers “z 5 E
0 4
01 i 1 ® .
04112920, o - 1 ® .
ciprod101620. i 1 ® .
b.. 11413 i 1 ® .
2w 1 ® o
Nl 1 (]
i 1 .
04 i KBs kube-pr.. /hyperkube pr. 1 .
hyperkube-a.. v199 1 K85 POD_ad.. /pause 1 .
1.13.12-alpine 1 K85 POD ku.. /pause 1 .
Seeall, Seeall, Seeal Seeall, i

Figure 7-11. A sample dashboard showing logging and metric information from many

running containers.

Log.Finalize()

Logging is one of the most overlooked and yet most important parts of deploying any
application at scale. As the size and complexity of applications increase, then so does
the difficulty of debugging them. Having top quality logs available makes debugging
much easier and moves it from the realm of "nearly impossible" to “a pleasant

experience".

Azure Monitor

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

No other cloud provider has as mature of a cloud application monitoring solution than
that found in Azure. Azure Monitor is an umbrella name for a collection of tools
designed to provide visibility into the state of your system. It helps you understand how
your cloud-native services are performing and proactively identifies issues affecting

them. Figure 7-12 presents a high level of view of Azure Monitor.

— Azure Monitor

jm)
@ 000 lm
e 2 5 = of

Application Container VM Monitoring
L Solutions

Application

VisuLIize E m E

Operating System L Dashboards Views Power Bl Workbooks
Metrics g
Azure Resources ilii [A
il . m

* o
®re
Analyze il iy
Azure Subscription L Metric Analytics Log Analytics
7
Azure Tenant)
Respond A n
Alerts Autoscale
Custom Sources L)
(N
Integrate {F\‘} @
L Logic Apps Export APls
v

\.

Figure 7-12. High-level view of Azure Monitor.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

Gathering logs and metrics

The first step in any monitoring solution is to gather as much data as possible. The more
data gathered, the deeper the insights. Instrumenting systems has traditionally been
difficult. Simple Network Management Protocol (SNMP) was the gold standard protocol
for collecting machine level information, but it required a great deal of knowledge and
configuration. Fortunately, much of this hard work has been eliminated as the most
common metrics are gathered automatically by Azure Monitor.

Application level metrics and events aren't possible to instrument automatically because
they're specific to the application being deployed. In order to gather these metrics,
there are SDKs and APIs available to directly report such information, such as when a
customer signs up or completes an order. Exceptions can also be captured and reported
back into Azure Monitor via Application Insights. The SDKs support most every language
found in Cloud Native Applications including Go, Python, JavaScript, and the .NET

languages.

The ultimate goal of gathering information about the state of your application is to
ensure that your end users have a good experience. What better way to tell if users are
experiencing issues than doing outside-in web tests? These tests can be as simple as
pinging your website from locations around the world or as involved as having agents

log into the site and simulate user actions.

Reporting data

Once the data is gathered, it can be manipulated, summarized, and plotted into charts,
which allow users to instantly see when there are problems. These charts can be
gathered into dashboards or into Workbooks, a multi-page report designed to tell a

story about some aspect of the system.

No modern application would be complete without some artificial intelligence or
machine learning. To this end, data can be passed ' to the various machine learning
tools in Azure to allow you to extract trends and information that would otherwise be
hidden.

Application Insights provides a powerful (SQL-like) query language called Kusto that can
query records, summarize them, and even plot charts. For example, the following query
will locate all records for the month of November 2007, group them by state, and plot
the top 10 as a pie chart.

Kusto

https://learn.microsoft.com/en-us/azure/azure-monitor/app/api-custom-events-metrics
https://learn.microsoft.com/en-us/azure/azure-monitor/app/monitor-web-app-availability
https://www.youtube.com/watch?v=Cuza-I1g9tw
https://www.youtube.com/watch?v=Cuza-I1g9tw

StormEvents

| where StartTime >= datetime(2007-11-01) and StartTime < datetime(2007-12-

01)

| summarize count() by State
| top 10 by count_

| render piechart

Figure 7-13 shows the results of this Application Insights Query.

|~ Graph BB Table 1 O Stats

GEORGIA: 15.36%

HAWAIL-10.58% COLORADO: 7.25%

KENTUCKY: 7.68%\. ‘/ALABAMA: 8.12%

.\W\SCONSIN: 8.70%

\TENNESSEE: 10.00%

MONTANA: 15.07%.—

NORTH CAROLINA: 8.41%:

Figure 7-13. Application Insights query results.

@ Done (0.8195s) 10 records

-o- ALABAMA

-o- COLORADO

-o- GEORGIA

-o- HAWAII

-o- KENTUCKY

-o- MONTANA

-o- NORTH CAROLINA

-o- TENNESSEE
TEXAS

-o- WISCONSIN

There is a playground for experimenting with Kusto @ queries. Reading sample queries

can also be instructive.

Dashboards

There are several different dashboard technologies that may be used to surface the

information from Azure Monitor. Perhaps the simplest is to just run queries in

Application Insights and plot the data into a chart.

https://dataexplorer.azure.com/clusters/help/databases/Samples
https://dataexplorer.azure.com/clusters/help/databases/Samples
https://learn.microsoft.com/en-us/azure/kusto/query/samples
https://learn.microsoft.com/en-us/azure/azure-monitor/learn/tutorial-app-dashboards

Fabrikam * + Newdachboard ¥ Upload L Download ” Edit (& Unshare . Fullscreen [Clone [l Delete

UTC Time : Past 24 howrs.

Fabrikam Server response time
Daity Seatistics Edit

This dashboard includes daily usage and perfarmance statistics for the Fabrikam application

i

=, D_UJ U__UU U _‘H/ \ /w /IL

Analytics Py # s B Server response time [Avg) Server requests S}
tabrikamonod : fibsamornd o
2.27 min 804.26.
NAME COUNT,
GET Home/Index EERRES = E Analytics
S (SRR]

GET/ 1876 K GET Home/Index:
65«
GET [FabrikamProd/Content/lonts/segoew.. 1769 K \\\\l
GET ServiceTickety/ Tt
N+14
GET /FabrikamProd/Content/fonts/segoew... 1769 K \ 38
POET ServiceTickets C ..
GET SenviceTickets/Index 747K 1.9x

GET CumomenDvuais
1.6«

GET Reports/Tickets

1.3x

GET /Content/fonts/segoewp-light-webfon.. 586 K

77.2«

GET /Content/fonts/segoewp-webfontect 5.6 K

GET Emplovess/Dead

1.3«

Figure 7-14. An example of Application Insights charts embedded in the main Azure
Dashboard.

These charts can then be embedded in the Azure portal proper through use of the
dashboard feature. For users with more exacting requirements, such as being able to
drill down into several tiers of data, Azure Monitor data is available to Power Bl . Power
Bl is an industry-leading, enterprise class, business intelligence tool that can aggregate
data from many different data sources.

https://powerbi.microsoft.com/
https://powerbi.microsoft.com/

Azure Audit Logs Billing < Share Dashboard

(Get me started

Events by Resouree Type Events by Status

s .
— [
[

Events by Caller Start Date
- weeseEs
I
I
|
I
1 Azure Service Health Events End Date
I
1 : -

] R
m— = 9/22/20
| I RS ;/ f -I 5
Events by Level Alert Events Autoscale Events Subscription id
E : subrscriptionld
|
level @ [Bark] @ ERRCR @ INFOSMAT & VERBOSE WARNING operstion @ Acated operation @ Soaledown.
Events Over Time Succeeded Warning
2 A
/\\ . FAN ~ > A
v L\ T A
A=l 1377 55

Figure 7-15. An example Power Bl dashboard.

Alerts

Sometimes, having data dashboards is insufficient. If nobody is awake to watch the
dashboards, then it can still be many hours before a problem is addressed, or even
detected. To this end, Azure Monitor also provides a top notch alerting solution. Alerts
can be triggered by a wide range of conditions including:

e Metric values

e Log search queries

e Activity Log events

e Health of the underlying Azure platform
e Tests for web site availability

When triggered, the alerts can perform a wide variety of tasks. On the simple side, the
alerts may just send an e-mail notification to a mailing list or a text message to an

individual. More involved alerts might trigger a workflow in a tool such as PagerDuty,

https://learn.microsoft.com/en-us/azure/azure-monitor/platform/alerts-overview

which is aware of who is on call for a particular application. Alerts can trigger actions in

Microsoft Flow @ unlocking near limitless possibilities for workflows.

As common causes of alerts are identified, the alerts can be enhanced with details about
the common causes of the alerts and the steps to take to resolve them. Highly mature
cloud-native application deployments may opt to kick off self-healing tasks, which
perform actions such as removing failing nodes from a scale set or triggering an
autoscaling activity. Eventually it may no longer be necessary to wake up on-call
personnel at 2AM to resolve a live-site issue as the system will be able to adjust itself to

compensate or at least limp along until somebody arrives at work the next morning.

Azure Monitor automatically leverages machine learning to understand the normal
operating parameters of deployed applications. This approach enables it to detect
services that are operating outside of their normal parameters. For instance, the typical
weekday traffic on the site might be 10,000 requests per minute. And then, on a given
week, suddenly the number of requests hits a highly unusual 20,000 requests per
minute. Smart Detection will notice this deviation from the norm and trigger an alert. At
the same time, the trend analysis is smart enough to avoid firing false positives when

the traffic load is expected.

References

e Azure Monitor

https://flow.microsoft.com/
https://flow.microsoft.com/
https://learn.microsoft.com/en-us/azure/azure-monitor/app/proactive-diagnostics
https://learn.microsoft.com/en-us/azure/azure-monitor/overview

Cloud-native identity

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Most software applications need to have some knowledge of the user or process that is
calling them. The user or process interacting with an application is known as a security
principal, and the process of authenticating and authorizing these principals is known as
identity management, or simply identity. Simple applications may include all of their
identity management within the application, but this approach doesn't scale well with
many applications and many kinds of security principals. Windows supports the use of
Active Directory to provide centralized authentication and authorization.

While this solution is effective within corporate networks, it isn't designed for use by
users or applications that are outside of the AD domain. With the growth of Internet-

based applications and the rise of cloud-native apps, security models have evolved.

In today's cloud-native identity model, architecture is assumed to be distributed. Apps
can be deployed anywhere and may communicate with other apps anywhere. Clients
may communicate with these apps from anywhere, and in fact, clients may consist of
any combination of platforms and devices. Cloud-native identity solutions use open
standards to achieve secure application access from clients. These clients range from
human users on PCs or phones, to other apps hosted anywhere online, to set-top boxes
and IOT devices running any software platform anywhere in the world.

Modern cloud-native identity solutions typically use access tokens that are issued by a
secure token service/server (STS) to a security principal once their identity is determined.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

The access token, typically a JSON Web Token (JWT), includes claims about the security
principal. These claims will minimally include the user's identity but may also include
other claims that can be used by applications to determine the level of access to grant
the principal.

Typically, the STS is only responsible for authenticating the principal. Determining their

level of access to resources is left to other parts of the application.

References

e Microsoft identity platform

https://learn.microsoft.com/en-us/azure/active-directory/develop/

Authentication and authorization in
cloud-native apps

Article « 04/07/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Authentication is the process of determining the identity of a security principal.
Authorization is the act of granting an authenticated principal permission to perform an
action or access a resource. Sometimes authentication is shortened to AuthN and
authorization is shortened to Authz. Cloud-native applications need to rely on open
HTTP-based protocols to authenticate security principals since both clients and

applications could be running anywhere in the world on any platform or device. The
only common factor is HTTP.

Many organizations still rely on local authentication services like Active Directory
Federation Services (ADFS). While this approach has traditionally served organizations
well for on premises authentication needs, cloud-native applications benefit from
systems designed specifically for the cloud. A recent 2019 United Kingdom National
Cyber Security Centre (NCSC) advisory states that "organizations using Azure AD as their
primary authentication source will actually lower their risk compared to ADFS." Some

reasons outlined in this analysis @ include:

e Access to full set of Microsoft credential protection technologies.

e Most organizations are already relying on Azure AD to some extent.

e Double hashing of NTLM hashes ensures compromise won't allow credentials that
work in local Active Directory.

https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/
https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

References

e Authentication basics
e Access tokens and claims

e |t may be time to ditch your on premises authentication services @

https://learn.microsoft.com/en-us/azure/active-directory/develop/authentication-scenarios
https://learn.microsoft.com/en-us/azure/active-directory/develop/access-tokens
https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/
https://oxfordcomputergroup.com/resources/o365-security-native-cloud-authentication/

Azure Active Directory

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET
Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

J

Microsoft Azure Active Directory (Azure AD) offers identity and access management as a
service. Customers use it to configure and maintain who users are, what information to
store about them, who can access that information, who can manage it, and what apps
can access it. AAD can authenticate users for applications configured to use it, providing
a single sign-on (SSO) experience. It can be used on its own or be integrated with

Windows AD running on premises.

Azure AD is built for the cloud. It's truly a cloud-native identity solution that uses a
REST-based Graph APl and OData syntax for queries, unlike Windows AD, which uses
LDAP. On premises Active Directory can sync user attributes to the cloud using Identity
Sync Services, allowing all authentication to take place in the cloud using Azure AD.
Alternately, authentication can be configured via Connect to pass back to local Active
Directory via ADFS to be completed by Windows AD on premises.

Azure AD supports company branded sign-in screens, multi-factory authentication, and
cloud-based application proxies that are used to provide SSO for applications hosted on

premises. It offers different kinds of security reporting and alert capabilities.

References

e Microsoft identity platform

https://learn.microsoft.com/en-us/azure/active-directory/develop/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

IdentityServer for cloud-native
applications

Article « 02/07/2025

~

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

IdentityServer is an authentication server that implements OpenlID Connect (OIDC) and
OAuth 2.0 standards for ASP.NET Core. It's designed to provide a common way to
authenticate requests to all of your applications, whether they're web, native, mobile, or
API endpoints. IdentityServer can be used to implement Single Sign-On (SSO) for
multiple applications and application types. It can be used to authenticate actual users
via sign-in forms and similar user interfaces as well as service-based authentication that
typically involves token issuance, verification, and renewal without any user interface.
IdentityServer is designed to be a customizable solution. Each instance is typically

customized to suit an individual organization and/or set of applications' needs.

Common web app scenarios

Typically, applications need to support some or all of the following scenarios:

e Human users accessing web applications with a browser.

e Human users accessing back-end Web APIs from browser-based apps.

e Human users on mobile/native clients accessing back-end Web APIs.

e Other applications accessing back-end Web APIs (without an active user or user

interface).

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

e Any application may need to interact with other Web APIs, using its own identity or
delegating to the user's identity.

Browser

Web application

Can call many other
web APls

Native or

mobile client Includes Graph, API,
Office 365, or custom

Web API

Daemon or Can call many other
device web APls

Figure 8-1. Application types and scenarios.

In each of these scenarios, the exposed functionality needs to be secured against
unauthorized use. At a minimum, this typically requires authenticating the user or
principal making a request for a resource. This authentication may use one of several
common protocols such as SAML2p, WS-Fed, or OpenlID Connect. Communicating with
APIs typically uses the OAuth2 protocol and its support for security tokens. Separating
these critical cross-cutting security concerns and their implementation details from the
applications themselves ensures consistency and improves security and maintainability.
Outsourcing these concerns to a dedicated product like IdentityServer helps the
requirement for every application to solve these problems itself.

IdentityServer provides middleware that runs within an ASP.NET Core application and
adds support for OpenID Connect and OAuth2 (see supported specifications &').
Organizations would create their own ASP.NET Core app using ldentityServer
middleware to act as the STS for all of their token-based security protocols. The
IdentityServer middleware exposes endpoints to support standard functionality,
including:

e Authorize (authenticate the end user)

e Token (request a token programmatically)

e Discovery (metadata about the server)

e User Info (get user information with a valid access token)

e Device Authorization (used to start device flow authorization)
e Introspection (token validation)

e Revocation (token revocation)

https://docs.duendesoftware.com/identityserver/v7/overview/specs/
https://docs.duendesoftware.com/identityserver/v7/overview/specs/

e End Session (trigger single sign-out across all apps)

Getting started

IdentityServer is available:

e With a community license, which lets you use the IdentityServer free for small
companies and non-profits & (conditions apply)

e Paid, which lets you use the IdentityServer in a commercial scenario @
For more information about pricing, see the official product's pricing page @'.

You can add it to your applications using its NuGet packages. The main package is
IdentityServer @, which has been downloaded over four million times. The base package
doesn't include any user interface code and only supports in-memory configuration. To
use it with a database, you'll also want a data provider like
Duende.ldentityServer.Storage @', which uses Entity Framework Core to store
configuration and operational data for IdentityServer. For user interface, you can copy
files from the Quickstart Ul repository @ into your ASP.NET Core MVC application to add
support for sign in and sign out using IdentityServer middleware.

Configuration

IdentityServer supports different kinds of protocols and social authentication providers
that can be configured as part of each custom installation. This is typically done in the
ASP.NET Core application's Program class (or in the Startup class in the
Configureservices method). The configuration involves specifying the supported
protocols and the paths to the servers and endpoints that will be used. Figure 8-2 shows
an example configuration taken from the IdentityServer Quickstart for ASP.NET Core

applications @ project:
C#

// some details omitted
builder.Services.AddIdentityServer();

builder.Services.AddAuthentication(options =>

{
options.DefaultScheme = "Cookies";
options.DefaultChallengeScheme = "oidc";

})

.AddCookie("Cookies™)

.AddGoogle("Google", options =>

{

https://duendesoftware.com/products/communityedition
https://duendesoftware.com/products/communityedition
https://duendesoftware.com/products/communityedition
https://duendesoftware.com/products/identityserver
https://duendesoftware.com/products/identityserver
https://duendesoftware.com/products/identityserver
https://duendesoftware.com/products/identityserver
https://www.nuget.org/packages/Duende.IdentityServer/
https://www.nuget.org/packages/Duende.IdentityServer/
https://www.nuget.org/packages/Duende.IdentityServer.Storage
https://www.nuget.org/packages/Duende.IdentityServer.Storage
https://github.com/DuendeSoftware/IdentityServer.Quickstart.UI
https://github.com/DuendeSoftware/IdentityServer.Quickstart.UI
https://docs.duendesoftware.com/identityserver/v7/quickstarts/2_interactive/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/2_interactive/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/2_interactive/

options.SignInScheme =
IdentityServerConstants.ExternalCookieAuthenticationScheme;

options.ClientId = "<insert here>";
options.ClientSecret = "<insert here>";

})
.AddOpenIdConnect("oidc", options =>

{
options.Authority = "https://localhost:5001";

options.ClientId = "web";
options.ClientSecret = "secret";
options.ResponseType = "code";

options.Scope.Clear();
options.Scope.Add("openid");
options.Scope.Add("profile");

options.MapInboundClaims = false; // Don't rename claim types

options.SaveTokens = true;

1)

Figure 8-2. Configuring IdentityServer.

JavaScript clients

Many cloud-native applications use server-side APIs and rich client single page

applications (SPAs) on the front end. IdentityServer ships a JavaScript client@ (oidc-

client.js) via NPM that can be added to SPAs to enable them to use IdentityServer for

sign in, sign out, and token-based authentication of web APIs. In addition, you can use a

backend-for-frontend (BFF) & that implements all of the security protocol interactions

with the token server and the IETF's OAuth 2.0 for Browser-Based Applications spect'.

References

e |dentityServer documentation @
e Application types
e JavaScript OIDC client

Previous m

https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/js_with_backend/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/js_with_backend/
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps
https://docs.duendesoftware.com/identityserver/v7/
https://docs.duendesoftware.com/identityserver/v7/
https://learn.microsoft.com/en-us/azure/active-directory/develop/app-types
https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/
https://docs.duendesoftware.com/identityserver/v7/quickstarts/js_clients/

Cloud-native security

Article < 11/08/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Not a day goes by where the news doesn't contain some story about a company being
hacked or somehow losing their customers' data. Even countries/regions aren't immune
to the problems created by treating security as an afterthought. For years, companies
have treated the security of customer data and, in fact, their entire networks as
something of a "nice to have". Windows servers were left unpatched, ancient versions of

PHP kept running, and MongoDB databases left wide open to the world.

However, there are starting to be real-world consequences for not maintaining a
security mindset when building and deploying applications. Many companies learned
the hard way what can happen when servers and desktops aren't patched during the
2017 outbreak of NotPetya@. The cost of these attacks has easily reached into the
billions, with some estimates putting the losses from this single attack at 10 billion US
dollars.

Even governments aren't immune to hacking incidents. The city of Baltimore was held
ransom by criminals @ making it impossible for citizens to pay their bills or use city

services.

There has also been an increase in legislation that mandates certain data protections for
personal data. In Europe, GDPR has been in effect for more than a year and, more
recently, California passed their own version called CCDA, which comes into effect
January 1, 2020. The fines under GDPR can be so punishing as to put companies out of

https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-robbinhood-mayor-jack-young-hackers
https://www.vox.com/recode/2019/5/21/18634505/baltimore-ransom-robbinhood-mayor-jack-young-hackers
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

business. Google has already been fined 50 million Euros for violations, but that's just a

drop in the bucket compared with the potential fines.

In short, security is serious business.

Azure security for cloud-native apps

Article » 03/25/2023

r

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Cloud-native applications can be both easier and more difficult to secure than
traditional applications. On the downside, you need to secure more smaller applications
and dedicate more energy to build out the security infrastructure. The heterogeneous
nature of programming languages and styles in most service deployments also means

you need to pay more attention to security bulletins from many different providers.

On the flip side, smaller services, each with their own data store, limit the scope of an
attack. If an attacker compromises one system, it's probably more difficult for the
attacker to make the jump to another system than it is in a monolithic application.
Process boundaries are strong boundaries. Also, if a database backup gets exposed,
then the damage is more limited, as that database contains only a subset of data and is

unlikely to contain personal data.

Threat modeling

No matter if the advantages outweigh the disadvantages of cloud-native applications,
the same holistic security mindset must be followed. Security and secure thinking must
be part of every step of the development and operations story. When planning an

application ask questions like:

e What would be the impact of this data being lost?

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

e How can we limit the damage from bad data being injected into this service?
e Who should have access to this data?
e Are there auditing policies in place around the development and release process?

All these questions are part of a process called threat modeling. This process tries to
answer the question of what threats there are to the system, how likely the threats are,

and the potential damage from them.

Once the list of threats has been established, you need to decide whether they're worth
mitigating. Sometimes a threat is so unlikely and expensive to plan for that it isn't worth
spending energy on it. For instance, some state level actor could inject changes into the
design of a process that is used by millions of devices. Now, instead of running a certain
piece of code in Ring 3 &, that code is run in Ring 0. This process allows an exploit that
can bypass the hypervisor and run the attack code on the bare metal machines, allowing
attacks on all the virtual machines that are running on that hardware.

The altered processors are difficult to detect without a microscope and advanced
knowledge of the on silicon design of that processor. This scenario is unlikely to happen
and expensive to mitigate, so probably no threat model would recommend building
exploit protection for it.

More likely threats, such as broken access controls permitting 1d incrementing attacks
(replacing Id=2 with Id=3 in the URL) or SQL injection, are more attractive to build
protections against. The mitigations for these threats are quite reasonable to build and

prevent embarrassing security holes that smear the company's reputation.

Principle of least privilege

One of the founding ideas in computer security is the Principle of Least Privilege (POLP).
It's actually a foundational idea in most any form of security be it digital or physical. In
short, the principle is that any user or process should have the smallest number of rights

possible to execute its task.

As an example, think of the tellers at a bank: accessing the safe is an uncommon activity.
So, the average teller can't open the safe themselves. To gain access, they need to

escalate their request through a bank manager, who performs additional security
checks.

In a computer system, a fantastic example is the rights of a user connecting to a
database. In many cases, there's a single user account used to both build the database
structure and run the application. Except in extreme cases, the account running the

application doesn't need the ability to update schema information. There should be

https://learn.microsoft.com/en-us/azure/security/azure-security-threat-modeling-tool
https://en.wikipedia.org/wiki/Protection_ring
https://en.wikipedia.org/wiki/Protection_ring

several accounts that provide different levels of privilege. The application should only
use the permission level that grants read and writes access to the data in the tables. This
kind of protection would eliminate attacks that aimed to drop database tables or

introduce malicious triggers.

Almost every part of building a cloud-native application can benefit from remembering
the principle of least privilege. You can find it at play when setting up firewalls, network

security groups, roles, and scopes in Role-based access control (RBAC).

Penetration testing

As applications become more complicated the number of attack vectors increases at an
alarming rate. Threat modeling is flawed in that it tends to be executed by the same
people building the system. In the same way that many developers have trouble
envisioning user interactions and then build unusable user interfaces, most developers
have difficulty seeing every attack vector. It's also possible that the developers building

the system aren't well versed in attack methodologies and miss something crucial.

Penetration testing or "pen testing" involves bringing in external actors to attempt to
attack the system. These attackers may be an external consulting company or other
developers with good security knowledge from another part of the business. They're
given carte blanche to attempt to subvert the system. Frequently, they'll find extensive
security holes that need to be patched. Sometimes the attack vector will be something
totally unexpected like exploiting a phishing attack against the CEO.

Azure itself is constantly undergoing attacks from a team of hackers inside Microsoft .
Over the years, they've been the first to find dozens of potentially catastrophic attack
vectors, closing them before they can be exploited externally. The more tempting a
target, the more likely that eternal actors will attempt to exploit it and there are a few
targets in the world more tempting than Azure.

Monitoring

Should an attacker attempt to penetrate an application, there should be some warning
of it. Frequently, attacks can be spotted by examining the logs from services. Attacks
leave telltale signs that can be spotted before they succeed. For instance, an attacker
attempting to guess a password will make many requests to a login system. Monitoring
around the login system can detect weird patterns that are out of line with the typical
access pattern. This monitoring can be turned into an alert that can, in turn, alert an

operations person to activate some sort of countermeasure. A highly mature monitoring

https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/

system might even take action based on these deviations proactively adding rules to

block requests or throttle responses.

Securing the build

One place where security is often overlooked is around the build process. Not only
should the build run security checks, such as scanning for insecure code or checked-in
credentials, but the build itself should be secure. If the build server is compromised,
then it provides a fantastic vector for introducing arbitrary code into the product.

Imagine that an attacker is looking to steal the passwords of people signing into a web
application. They could introduce a build step that modifies the checked-out code to
mirror any login request to another server. The next time code goes through the build,
it's silently updated. The source code vulnerability scanning won't catch this vulnerability
as it runs before the build. Equally, nobody will catch it in a code review because the
build steps live on the build server. The exploited code will go to production where it
can harvest passwords. Probably there's no audit log of the build process changes, or at
least nobody monitoring the audit.

This scenario is a perfect example of a seemingly low-value target that can be used to
break into the system. Once an attacker breaches the perimeter of the system, they can
start working on finding ways to elevate their permissions to the point that they can

cause real harm anywhere they like.

Building secure code

.NET Framework is already a quite secure framework. It avoids some of the pitfalls of
unmanaged code, such as walking off the ends of arrays. Work is actively done to fix
security holes as they're discovered. There's even a bug bounty program @ that pays

researchers to find issues in the framework and report them instead of exploiting them.

There are many ways to make .NET code more secure. Following guidelines such as the
Secure coding guidelines for .NET article is a reasonable step to take to ensure that the
code is secure from the ground up. The OWASP top 10" is another invaluable guide to

build secure code.

The build process is a good place to put scanning tools to detect problems in source
code before they make it into production. Most every project has dependencies on
some other packages. A tool that can scan for outdated packages will catch problems in
a nightly build. Even when building Docker images, it's useful to check and make sure

https://www.microsoft.com/msrc/bounty
https://www.microsoft.com/msrc/bounty
https://learn.microsoft.com/en-us/dotnet/standard/security/secure-coding-guidelines
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

that the base image doesn't have known vulnerabilities. Another thing to check is that
nobody has accidentally checked in credentials.

Built-in security

Azure is designed to balance usability and security for most users. Different users are
going to have different security requirements, so they need to fine-tune their approach
to cloud security. Microsoft publishes a great deal of security information in the Trust
Center @' This resource should be the first stop for those professionals interested in

understanding how the built-in attack mitigation technologies work.

Within the Azure portal, the Azure Advisor & is a system that is constantly scanning an
environment and making recommendations. Some of these recommendations are
designed to save users money, but others are designed to identify potentially insecure
configurations, such as having a storage container open to the world and not protected
by a Virtual Network.

Azure network infrastructure

In an on-premises deployment environment, a great deal of energy is dedicated to
setting up networking. Setting up routers, switches, and the such is complicated work.
Networks allow certain resources to talk to other resources and prevent access in some
cases. A frequent network rule is to restrict access to the production environment from
the development environment on the off chance that a half-developed piece of code
runs awry and deletes a swath of data.

Out of the box, most PaaS Azure resources have only the most basic and permissive
networking setup. For instance, anybody on the Internet can access an app service. New
SQL Server instances typically come restricted, so that external parties can't access them,
but the IP address ranges used by Azure itself are permitted through. So, while the SQL
server is protected from external threats, an attacker only needs to set up an Azure
bridgehead from where they can launch attacks against all SQL instances on Azure.

Fortunately, most Azure resources can be placed into an Azure Virtual Network that
allows fine-grained access control. Similar to the way that on-premises networks
establish private networks that are protected from the wider world, virtual networks are

islands of private IP addresses that are located within the Azure network.

https://azure.microsoft.com/support/trust-center/
https://azure.microsoft.com/support/trust-center/
https://azure.microsoft.com/support/trust-center/
https://azure.microsoft.com/services/advisor/
https://azure.microsoft.com/services/advisor/

Internet

Gateway

Virtual Metwork

r@ Azure Resources

Figure 9-1. A virtual network in Azure.

In the same way that on-premises networks have a firewall governing access to the
network, you can establish a similar firewall at the boundary of the virtual network. By
default, all the resources on a virtual network can still talk to the Internet. It's only

incoming connections that require some form of explicit firewall exception.

With the network established, internal resources like storage accounts can be set up to
only allow for access by resources that are also on the Virtual Network. This firewall
provides an extra level of security, should the keys for that storage account be leaked,
attackers wouldn't be able to connect to it to exploit the leaked keys. This scenario is

another example of the principle of least privilege.

The nodes in an Azure Kubernetes cluster can participate in a virtual network just like
other resources that are more native to Azure. This functionality is called Azure
Container Networking Interface . In effect, it allocates a subnet within the virtual

network on which virtual machines and container images are allocated.

Continuing down the path of illustrating the principle of least privilege, not every
resource within a Virtual Network needs to talk to every other resource. For instance, in
an application that provides a web API over a storage account and a SQL database, it's
unlikely that the database and the storage account need to talk to one another. Any
data sharing between them would go through the web application. So, a network

security group (NSG) could be used to deny traffic between the two services.

https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://github.com/Azure/azure-container-networking/blob/master/docs/cni.md
https://learn.microsoft.com/en-us/azure/virtual-network/security-overview
https://learn.microsoft.com/en-us/azure/virtual-network/security-overview

A policy of denying communication between resources can be annoying to implement,
especially coming from a background of using Azure without traffic restrictions. On
some other clouds, the concept of network security groups is much more prevalent. For
instance, the default policy on AWS is that resources can't communicate among
themselves until enabled by rules in an NSG. While slower to develop this, a more
restrictive environment provides a more secure default. Making use of proper DevOps
practices, especially using Azure Resource Manager or Terraform to manage permissions
can make controlling the rules easier.

Virtual Networks can also be useful when setting up communication between on-
premises and cloud resources. A virtual private network can be used to seamlessly
attach the two networks together. This approach allows running a virtual network
without any sort of gateway for scenarios where all the users are on-site. There are a
number of technologies that can be used to establish this network. The simplest is to
use a site-to-site VPN that can be established between many routers and Azure. Traffic is
encrypted and tunneled over the Internet at the same cost per byte as any other traffic.
For scenarios where more bandwidth or more security is desirable, Azure offers a service
called Express Route that uses a private circuit between an on-premises network and
Azure. It's more costly and difficult to establish but also more secure.

Role-based access control for restricting access
to Azure resources

RBAC is a system that provides an identity to applications running in Azure. Applications
can access resources using this identity instead of or in addition to using keys or

passwords.

Security Principals

The first component in RBAC is a security principal. A security principal can be a user,

group, service principal, or managed identity.

Security principal

IV A
_ ML Service Managed
User Group principal identity

Figure 9-2. Different types of security principals.

e User - Any user who has an account in Azure Active Directory is a user.

https://learn.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json#s2smulti
https://learn.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-about-vpngateways?toc=%252fazure%252fvirtual-network%252ftoc.json#ExpressRoute

e Group - A collection of users from Azure Active Directory. As a member of a group,
a user takes on the roles of that group in addition to their own.

e Service principal - A security identity under which services or applications run.

e Managed identity - An Azure Active Directory identity managed by Azure.
Managed identities are typically used when developing cloud applications that

manage the credentials for authenticating to Azure services.

The security principal can be applied to most any resource. This aspect means that it's
possible to assign a security principal to a container running within Azure Kubernetes,
allowing it to access secrets stored in Key Vault. An Azure Function could take on a
permission allowing it to talk to an Active Directory instance to validate a JWT for a
calling user. Once services are enabled with a service principal, their permissions can be

managed granularly using roles and scopes.

Roles

A security principal can take on many roles or, using a more sartorial analogy, wear
many hats. Each role defines a series of permissions such as "Read messages from Azure
Service Bus endpoint”. The effective permission set of a security principal is the
combination of all the permissions assigned to all the roles that a security principal has.

Azure has a large number of built-in roles and users can define their own roles.

Role definition

Contributor
Onwner
Contributor . . "
Eradr’ Actions™:
1.

Backup Operatar
Security Reader

User Access Administra
Wirtual BMachine Contrib

"Notactions": |
"Authorizations*/Delete”,
“Authorization/*MWrite”,
"authorizationfelevatedccess/action”

1.

Built-in "Datasctions": [],
"NotDatafctions™: [],

, “AssipnableSscopes”:
Reader Support Tickets u,"g) :
’

Virtual Machine Operator |

Custom

Figure 9-3. RBAC role definitions.

Built into Azure are also a number of high-level roles such as Owner, Contributor,
Reader, and User Account Administrator. With the Owner role, a security principal can
access all resources and assign permissions to others. A contributor has the same level

of access to all resources but they can't assign permissions. A Reader can only view

existing Azure resources and a User Account Administrator can manage access to Azure

resources.

More granular built-in roles such as DNS Zone Contributor have rights limited to a

single service. Security principals can take on any number of roles.

Scopes

Roles can be applied to a restricted set of resources within Azure. For instance, applying
scope to the previous example of reading from a Service Bus queue, you can narrow the
permission to a single queue: "Read messages from Azure Service Bus endpoint

blah.servicebus.windows.net/queuel "

The scope can be as narrow as a single resource or it can be applied to an entire

resource group, subscription, or even management group.

When testing if a security principal has certain permission, the combination of role and
scope are taken into account. This combination provides a powerful authorization

mechanism.

Deny

Previously, only "allow" rules were permitted for RBAC. This behavior made some scopes
complicated to build. For instance, allowing a security principal access to all storage
accounts except one required granting explicit permission to a potentially endless list of
storage accounts. Every time a new storage account was created, it would have to be
added to this list of accounts. This added management overhead that certainly wasn't

desirable.

Deny rules take precedence over allow rules. Now representing the same "allow all but
one" scope could be represented as two rules "allow all" and "deny this one specific
one". Deny rules not only ease management but allow for resources that are extra
secure by denying access to everybody.

Checking access

As you can imagine, having a large number of roles and scopes can make figuring out
the effective permission of a service principal quite difficult. Piling deny rules on top of
that, only serves to increase the complexity. Fortunately, there's a permissions calculator
that can show the effective permissions for any service principal. It's typically found

under the IAM tab in the portal, as shown in Figure 9-3.

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#dns-zone-contributor
https://learn.microsoft.com/en-us/azure/role-based-access-control/check-access

=+ Add

Check access Role assignments Deny assignments Classic administrators ~ Roles

Check access

Review the level of access a user, group, service principal, or Add a role assignment View role assignments
managed identity has to this resource. Learn more &
Grant access to resources at this scope by View the users, groups, service principals
Find @ assigning a role to a user, group, service and managed identities that have role
Azure AD user, group, or service principal v principal, or managed identity. assignments granting them access at this
scope.
Search by name or email address v “ Learn more [2 Learn more [2

View deny assignments

® View the users, groups, service principals
and managed identities that have been
denied access to specific actions at this
scope.

Figure 9-4. Permission calculator for an app service.

Securing secrets

Passwords and certificates are a common attack vector for attackers. Password-cracking
hardware can do a brute-force attack and try to guess billions of passwords per second.
So it's important that the passwords that are used to access resources are strong, with a
large variety of characters. These passwords are exactly the kind of passwords that are
near impossible to remember. Fortunately, the passwords in Azure don't actually need
to be known by any human.

Many security experts suggest® that using a password manager to keep your own
passwords is the best approach. While it centralizes your passwords in one location, it
also allows using highly complex passwords and ensuring they're unique for each

account. The same system exists within Azure: a central store for secrets.

Azure Key Vault

Azure Key Vault provides a centralized location to store passwords for things such as
databases, API keys, and certificates. Once a secret is entered into the Vault, it's never
shown again and the commands to extract and view it are purposefully complicated. The
information in the safe is protected using either software encryption or FIPS 140-2 Level

2 validated Hardware Security Modules.

Access to the key vault is provided through RBACs, meaning that not just any user can
access the information in the vault. Say a web application wishes to access the database
connection string stored in Azure Key Vault. To gain access, applications need to run
using a service principal. Under this assumed role, they can read the secrets from the

https://www.troyhunt.com/password-managers-dont-have-to-be-perfect-they-just-have-to-be-better-than-not-having-one/
https://www.troyhunt.com/password-managers-dont-have-to-be-perfect-they-just-have-to-be-better-than-not-having-one/

safe. There are a number of different security settings that can further limit the access

that an application has to the vault, so that it can't update secrets but only read them.

Access to the key vault can be monitored to ensure that only the expected applications
are accessing the vault. The logs can be integrated back into Azure Monitor, unlocking
the ability to set up alerts when unexpected conditions are encountered.

Kubernetes

Within Kubernetes, there's a similar service for maintaining small pieces of secret

information. Kubernetes Secrets can be set via the typical kubectl executable.
Creating a secret is as simple as finding the base64 version of the values to be stored:

Console

echo -n 'admin' | base64
YWRtaWd=

echo -n '1f2dle2e67df' | base64d
MWYyZDF1IMmU2N2Rm

Then adding it to a secrets file named secret.yml for example that looks similar to the

following example:

yml

apiVersion: vl

kind: Secret

metadata:
name: mysecret

type: Opaque

data:
username: YWRtaW4=
password: MWYyZDFI1MmU2N2Rm

Finally, this file can be loaded into Kubernetes by running the following command:
Console
kubectl apply -f ./secret.yaml

These secrets can then be mounted into volumes or exposed to container processes

through environment variables. The Twelve-factor app @ approach to building

applications suggests using the lowest common denominator to transmit settings to an

https://12factor.net/
https://12factor.net/

application. Environment variables are the lowest common denominator, because

they're supported no matter the operating system or application.

An alternative to use the built-in Kubernetes secrets is to access the secrets in Azure Key
Vault from within Kubernetes. The simplest way to do this is to assign an RBAC role to
the container looking to load secrets. The application can then use the Azure Key Vault
APIs to access the secrets. However, this approach requires modifications to the code
and doesn't follow the pattern of using environment variables. Instead, it's possible to
inject values into a container. This approach is actually more secure than using the

Kubernetes secrets directly, as they can be accessed by users on the cluster.

Encryption in transit and at rest

Keeping data safe is important whether it's on disk or transiting between various
different services. The most effective way to keep data from leaking is to encrypt it into
a format that can't be easily read by others. Azure supports a wide range of encryption
options.

In transit

There are several ways to encrypt traffic on the network in Azure. The access to Azure
services is typically done over connections that use Transport Layer Security (TLS). For
instance, all the connections to the Azure APIs require TLS connections. Equally,
connections to endpoints in Azure storage can be restricted to work only over TLS

encrypted connections.

TLS is a complicated protocol and simply knowing that the connection is using TLS isn't
sufficient to ensure security. For instance, TLS 1.0 is chronically insecure, and TLS 1.1 isn't
much better. Even within the versions of TLS, there are various settings that can make
the connections easier to decrypt. The best course of action is to check and see if the
server connection is using up-to-date and well configured protocols.

This check can be done by an external service such as SSL labs' SSL Server Test. A test
run against a typical Azure endpoint, in this case a service bus endpoint, yields a near
perfect score of A.

Even services like Azure SQL databases use TLS encryption to keep data hidden. The
interesting part about encrypting the data in transit using TLS is that it isn't possible,
even for Microsoft, to listen in on the connection between computers running TLS. This
should provide comfort for companies concerned that their data may be at risk from
Microsoft proper or even a state actor with more resources than the standard attacker.

SSL Report: todeletesoon.servicebus.windows.net IS

Assessed on: Sun, 09 Jun 2019 05:15:43 UTC | Hide | Clear cache Scan Another »

Summary

Overall Rating

Protocol Support

0 20 40 60 80

Cipher Strength

100

Visit our documentation page for more information, configuration guides, and books. Known issues are documented here.

HTTP Strict Transport Security (HSTS) with long duration deployed on this server. MORE INFO »

Figure 9-5. SSL labs report showing a score of A for a Service Bus endpoint.

While this level of encryption isn't going to be sufficient for all time, it should inspire
confidence that Azure TLS connections are quite secure. Azure will continue to evolve its
security standards as encryption improves. It's nice to know that there's somebody
watching the security standards and updating Azure as they improve.

At rest

In any application, there are a number of places where data rests on the disk. The
application code itself is loaded from some storage mechanism. Most applications also
use some kind of a database such as SQL Server, Cosmos DB, or even the amazingly
price-efficient Table Storage. These databases all use heavily encrypted storage to
ensure that nobody other than the applications with proper permissions can read your
data. Even the system operators can't read data that has been encrypted. So customers

can remain confident their secret information remains secret.

Storage

The underpinning of much of Azure is the Azure Storage engine. Virtual machine disks
are mounted on top of Azure Storage. Azure Kubernetes Service runs on virtual
machines that, themselves, are hosted on Azure Storage. Even serverless technologies,
such as Azure Functions Apps and Azure Container Instances, run out of disk that is part
of Azure Storage.

If Azure Storage is well encrypted, then it provides for a foundation for most everything
else to also be encrypted. Azure Storage is encrypted with FIPS 140-2 & compliant 256-
bit AESZ . This is a well-regarded encryption technology having been the subject of
extensive academic scrutiny over the last 20 or so years. At present, there's no known

https://learn.microsoft.com/en-us/azure/storage/common/storage-service-encryption
https://en.wikipedia.org/wiki/FIPS_140
https://en.wikipedia.org/wiki/FIPS_140
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

practical attack that would allow someone without knowledge of the key to read data
encrypted by AES.

By default, the keys used for encrypting Azure Storage are managed by Microsoft. There
are extensive protections in place to ensure to prevent malicious access to these keys.
However, users with particular encryption requirements can also provide their own
storage keys that are managed in Azure Key Vault. These keys can be revoked at any
time, which would effectively render the contents of the Storage account using them
inaccessible.

Virtual machines use encrypted storage, but it's possible to provide another layer of
encryption by using technologies like BitLocker on Windows or DM-Crypt on Linux.
These technologies mean that even if the disk image was leaked off of storage, it would

remain near impossible to read it.

Azure SQL

Databases hosted on Azure SQL use a technology called Transparent Data Encryption
(TDE) to ensure data remains encrypted. It's enabled by default on all newly created SQL
databases, but must be enabled manually for legacy databases. TDE executes real-time
encryption and decryption of not just the database, but also the backups and
transaction logs.

The encryption parameters are stored in the master database and, on startup, are read
into memory for the remaining operations. This means that the master database must
remain unencrypted. The actual key is managed by Microsoft. However, users with
exacting security requirements may provide their own key in Key Vault in much the same
way as is done for Azure Storage. The Key Vault provides for such services as key
rotation and revocation.

The "Transparent” part of TDS comes from the fact that there aren't client changes
needed to use an encrypted database. While this approach provides for good security,
leaking the database password is enough for users to be able to decrypt the data.
There's another approach that encrypts individual columns or tables in a database.
Always Encrypted ensures that at no point the encrypted data appears in plain text
inside the database.

Setting up this tier of encryption requires running through a wizard in SQL Server
Management Studio to select the sort of encryption and where in Key Vault to store the
associated keys.

https://learn.microsoft.com/en-us/azure/storage/common/storage-encryption-keys-powershell
https://learn.microsoft.com/en-us/azure/storage/common/storage-encryption-keys-powershell
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption
https://learn.microsoft.com/en-us/azure/sql-database/sql-database-always-encrypted-azure-key-vault

T Mways Encrypted — O =

= | Column Selection

Introduction % Help

| Column Selection |

Master Key Configuration

CEK_Autol (Mew)

Validatian
Summary Encryption Type 1) Encryption Key
Results MName State Encryption Type Encryplion Key
= dbo.Patients
O Patientld
% SSN # Deterministic ~ CEK_Autol (New)
H FirstMame Choose Type...
0 LastName Eﬁtﬂ
0 MiddleName Randomized
| Strestfiddress
| City
1 TipCode
n State
=1 BirthDate # Randomized - CEK_Autol (Mew)

[[] Show affected columns only

< Previous Mext > Cancel

Figure 9-6. Selecting columns in a table to be encrypted using Always Encrypted.

Client applications that read information from these encrypted columns need to make
special allowances to read encrypted data. Connection strings need to be updated with
Column Encryption Setting=Enabled and client credentials must be retrieved from the
Key Vault. The SQL Server client must then be primed with the column encryption keys.
Once that is done, the remaining actions use the standard interfaces to SQL Client. That
is, tools like Dapper and Entity Framework, which are built on top of SQL Client, will
continue to work without changes. Always Encrypted may not yet be available for every
SQL Server driver on every language.

The combination of TDE and Always Encrypted, both of which can be used with client-
specific keys, ensures that even the most exacting encryption requirements are

supported.

Cosmos DB

Cosmos DB is the newest database provided by Microsoft in Azure. It has been built
from the ground up with security and cryptography in mind. AES-256bit encryption is

standard for all Cosmos DB databases and can't be disabled. Coupled with the TLS 1.2

requirement for communication, the entire storage solution is encrypted.

Secret Store
Stores Sy

' Deploy 3¢
@
Azure Cosmos DB Management Service (RFP)
Unwraps 5;[Encryption key,] --> Encryption key,

O

SklEncryption key] Encryption key

1
I
|
I
I
I
I
.fJ-'\

ot TLS 1.2
Storage Processing (J-=-=-----sc-ccccnnnq C

o
L
[

i
oy

Azure Cosmos DB Back End Server

Figure 9-7. The flow of data encryption within Cosmos DB.

While Cosmos DB doesn't provide for supplying customer encryption keys, there has
been significant work done by the team to ensure it remains PCI-DSS compliant without
that. Cosmos DB also doesn't support any sort of single column encryption similar to
Azure SQL's Always Encrypted yet.

Keeping secure

Azure has all the tools necessary to release a highly secure product. However, a chain is
only as strong as its weakest link. If the applications deployed on top of Azure aren't
developed with a proper security mindset and good security audits, then they become
the weak link in the chain. There are many great static analysis tools, encryption libraries,
and security practices that can be used to ensure that the software installed on Azure is
as secure as Azure itself. Examples include static analysis tools ', encryption libraries ',

and security practices &

https://www.mend.io/sca/
https://www.mend.io/sca/
https://www.libressl.org/
https://www.libressl.org/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/
https://azure.microsoft.com/resources/videos/red-vs-blue-internal-security-penetration-testing-of-microsoft-azure/

DevOps

Article « 02/16/2023

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

The favorite mantra of software consultants is to answer "It depends" to any question
posed. It isn't because software consultants are fond of not taking a position. It's
because there's no one true answer to any questions in software. There's no absolute
right and wrong, but rather a balance between opposites.

Take, for instance, the two major schools of developing web applications: Single Page
Applications (SPAs) versus server-side applications. On the one hand, the user
experience tends to be better with SPAs and the amount of traffic to the web server can
be minimized making it possible to host them on something as simple as static hosting.
On the other hand, SPAs tend to be slower to develop and more difficult to test. Which

one is the right choice? Well, it depends on your situation.

Cloud-native applications aren't immune to that same dichotomy. They have clear
advantages in terms of speed of development, stability, and scalability, but managing

them can be quite a bit more difficult.

Years ago, it wasn't uncommon for the process of moving an application from
development to production to take a month, or even more. Companies released
software on a 6-month or even every year cadence. One needs to look no further than
Microsoft Windows to get an idea for the cadence of releases that were acceptable
before the ever-green days of Windows 10. Five years passed between Windows XP and
Vista, a further three between Vista and Windows 7.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

It's now fairly well established that being able to release software rapidly gives fast-
moving companies a huge market advantage over their more sloth-like competitors. It's
for that reason that major updates to Windows 10 are now approximately every six

months.

The patterns and practices that enable faster, more reliable releases to deliver value to
the business are collectively known as DevOps. They consist of a wide range of ideas
spanning the entire software development life cycle from specifying an application all
the way up to delivering and operating that application.

DevOps emerged before microservices and it's likely that the movement towards
smaller, more fit to purpose services wouldn't have been possible without DevOps to

make releasing and operating not just one but many applications in production easier.

@® microservices . I @ DevOps
Search term . Search term

+ Add comparison

United States + 4/28/09-5/28/19 « All categories ¥ Web Search «

|4=

o<

Interest over time

J | . W

Figure 10-1 - DevOps and microservices.

Through good DevOps practices, it's possible to realize the advantages of cloud-native
applications without suffocating under a mountain of work actually operating the

applications.

There's no golden hammer when it comes to DevOps. Nobody can sell a complete and
all-encompassing solution for releasing and operating high-quality applications. This is
because each application is wildly different from all others. However, there are tools that
can make DevOps a far less daunting proposition. One of these tools is known as Azure

DevOps.

Azure DevOps

Azure DevOps has a long pedigree. It can trace its roots back to when Team Foundation
Server first moved online and through the various name changes: Visual Studio Online
and Visual Studio Team Services. Through the years, however, it has become far more

than its predecessors.

Azure DevOps is divided into five major components:

5 < A B

Azure Azure Azure Azure Azure
Boards Repos Pipelines Test Plans Artifacts

Figure 10-2 - Azure DevOps.

Azure Repos - Source code management that supports the venerable Team Foundation
Version Control (TFVC) and the industry favorite Git . Pull requests provide a way to
enable social coding by fostering discussion of changes as they're made.

Azure Boards - Provides an issue and work item tracking tool that strives to allow users
to pick the workflows that work best for them. It comes with a number of pre-
configured templates including ones to support SCRUM and Kanban styles of
development.

Azure Pipelines - A build and release management system that supports tight
integration with Azure. Builds can be run on various platforms from Windows to Linux to

macOS. Build agents may be provisioned in the cloud or on-premises.

Azure Test Plans - No QA person will be left behind with the test management and

exploratory testing support offered by the Test Plans feature.

Azure Artifacts - An artifact feed that allows companies to create their own, internal,
versions of NuGet, npm, and others. It serves a double purpose of acting as a cache of
upstream packages if there's a failure of a centralized repository.

The top-level organizational unit in Azure DevOps is known as a Project. Within each
project the various components, such as Azure Artifacts, can be turned on and off. Each
of these components provides different advantages for cloud-native applications. The
three most useful are repositories, boards, and pipelines. If users want to manage their
source code in another repository stack, such as GitHub, but still take advantage of

Azure Pipelines and other components, that's perfectly possible.

Fortunately, development teams have many options when selecting a repository. One of
them is GitHub.

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git

GitHub Actions

Founded in 2009, GitHub is a widely popular web-based repository for hosting projects,
documentation, and code. Many large tech companies, such as Apple, Amazon, Google,
and mainstream corporations use GitHub. GitHub uses the open-source, distributed
version control system named Git as its foundation. On top, it then adds its own set of
features, including defect tracking, feature and pull requests, tasks management, and
wikis for each code base.

As GitHub evolves, it too is adding DevOps features. For example, GitHub has its own
continuous integration/continuous delivery (CI/CD) pipeline, called GitHub Actions.
GitHub Actions is a community-powered workflow automation tool. It lets DevOps
teams integrate with their existing tooling, mix and match new products, and hook into
their software lifecycle, including existing Cl/CD partners."

GitHub has over 40 million users, making it the largest host of source code in the world.
In October of 2018, Microsoft purchased GitHub. Microsoft has pledged that GitHub will
remain an open platform & that any developer can plug into and extend. It continues to
operate as an independent company. GitHub offers plans for enterprise, team,
professional, and free accounts.

Source control

Organizing the code for a cloud-native application can be challenging. Instead of a
single giant application, the cloud-native applications tend to be made up of a web of
smaller applications that talk with one another. As with all things in computing, the best
arrangement of code remains an open question. There are examples of successful
applications using different kinds of layouts, but two variants seem to have the most

popularity.

Before getting down into the actual source control itself, it's probably worth deciding on
how many projects are appropriate. Within a single project, there's support for multiple
repositories, and build pipelines. Boards are a little more complicated, but there too, the
tasks can easily be assigned to multiple teams within a single project. It's possible to
support hundreds, even thousands of developers, out of a single Azure DevOps project.
Doing so is likely the best approach as it provides a single place for all developer to
work out of and reduces the confusion of finding that one application when developers
are unsure in which project in which it resides.

Splitting up code for microservices within the Azure DevOps project can be slightly
more challenging.

https://techcrunch.com/2018/06/04/microsoft-promises-to-keep-github-independent-and-open/
https://techcrunch.com/2018/06/04/microsoft-promises-to-keep-github-independent-and-open/

VS.

Repository per Microservice Single Repository

Figure 10-3 - One vs. many repositories.

Repository per microservice

At first glance, this approach seems like the most logical approach to splitting up the

source code for microservices. Each repository can contain the code needed to build the

one microservice. The advantages to this approach are readily visible:

1.

Instructions for building and maintaining the application can be added to a
README file at the root of each repository. When flipping through the repositories,
it's easy to find these instructions, reducing spin-up time for developers.

. Every service is located in a logical place, easily found by knowing the name of the
service.
. Builds can easily be set up such that they're only triggered when a change is made

to the owning repository.

. The number of changes coming into a repository is limited to the small number of

developers working on the project.

. Security is easy to set up by restricting the repositories to which developers have

read and write permissions.

. Repository level settings can be changed by the owning team with a minimum of

discussion with others.

One of the key ideas behind microservices is that services should be siloed and

separated from each other. When using Domain Driven Design to decide on the

boundaries for services the services act as transactional boundaries. Database updates

shouldn't span multiple services. This collection of related data is referred to as a

bounded context. This idea is reflected by the isolation of microservice data to a

database separate and autonomous from the rest of the services. It makes a great deal

of sense to carry this idea all the way through to the source code.

However, this approach isn't without its issues. One of the more gnarly development
problems of our time is managing dependencies. Consider the number of files that
make up the average node_modules directory. A fresh install of something like create-
react-app is likely to bring with it thousands of packages. The question of how to

manage these dependencies is a difficult one.

If a dependency is updated, then downstream packages must also update this
dependency. Unfortunately, that takes development work so, invariably, the
node_modules directory ends up with multiple versions of a single package, each one a
dependency of some other package that is versioned at a slightly different cadence.
When deploying an application, which version of a dependency should be used? The
version that is currently in production? The version that is currently in Beta but is likely
to be in production by the time the consumer makes it to production? Difficult problems
that aren't resolved by just using microservices.

There are libraries that are depended upon by a wide variety of projects. By dividing the
microservices up with one in each repository the internal dependencies can best be
resolved by using the internal repository, Azure Artifacts. Builds for libraries will push
their latest versions into Azure Artifacts for internal consumption. The downstream
project must still be manually updated to take a dependency on the newly updated

packages.

Another disadvantage presents itself when moving code between services. Although it
would be nice to believe that the first division of an application into microservices is
100% correct, the reality is that rarely we're so prescient as to make no service division
mistakes. Thus, functionality and the code that drives it will need to move from service
to service: repository to repository. When leaping from one repository to another, the
code loses its history. There are many cases, especially in the event of an audit, where

having full history on a piece of code is invaluable.

The final and most important disadvantage is coordinating changes. In a true
microservices application, there should be no deployment dependencies between
services. It should be possible to deploy services A, B, and C in any order as they have
loose coupling. In reality, however, there are times when it's desirable to make a change
that crosses multiple repositories at the same time. Some examples include updating a
library to close a security hole or changing a communication protocol used by all

services.

To do a cross-repository change requires a commit to each repository be made in
succession. Each change in each repository will need to be pull-requested and reviewed

separately. This activity can be difficult to coordinate.

An alternative to using many repositories is to put all the source code together in a
giant, all knowing, single repository.

Single repository

In this approach, sometimes referred to as a monorepository ', all the source code for
every service is put into the same repository. At first, this approach seems like a terrible
idea likely to make dealing with source code unwieldy. There are, however, some
marked advantages to working this way.

The first advantage is that it's easier to manage dependencies between projects. Instead
of relying on some external artifact feed, projects can directly import one another. This
means that updates are instant, and conflicting versions are likely to be found at
compile time on the developer's workstation. In effect, shifting some of the integration
testing left.

When moving code between projects, it's now easier to preserve the history as the files

will be detected as having been moved rather than being rewritten.

Another advantage is that wide ranging changes that cross service boundaries can be
made in a single commit. This activity reduces the overhead of having potentially dozens
of changes to review individually.

There are many tools that can perform static analysis of code to detect insecure
programming practices or problematic use of APIs. In a multi-repository world, each
repository will need to be iterated over to find the problems in them. The single

repository allows running the analysis all in one place.

There are also many disadvantages to the single repository approach. One of the most
worrying ones is that having a single repository raises security concerns. If the contents
of a repository are leaked in a repository per service model, the amount of code lost is
minimal. With a single repository, everything the company owns could be lost. There
have been many examples in the past of this happening and derailing entire game
development efforts. Having multiple repositories exposes less surface area, which is a

desirable trait in most security practices.

The size of the single repository is likely to become unmanageable rapidly. This presents
some interesting performance implications. It may become necessary to use specialized
tools such as Virtual File System for Git @, which was originally designed to improve the
experience for developers on the Windows team.

https://danluu.com/monorepo/
https://danluu.com/monorepo/
https://github.com/Microsoft/VFSForGit
https://github.com/Microsoft/VFSForGit

Frequently the argument for using a single repository boils down to an argument that
Facebook or Google use this method for source code arrangement. If the approach is
good enough for these companies, then, surely, it's the correct approach for all
companies. The truth of the matter is that few companies operate on anything like the
scale of Facebook or Google. The problems that occur at those scales are different from
those most developers will face. What is good for the goose may not be good for the

gander.

In the end, either solution can be used to host the source code for microservices.
However, in most cases, the management, and engineering overhead of operating in a
single repository isn't worth the meager advantages. Splitting code up over multiple
repositories encourages better separation of concerns and encourages autonomy

among development teams.

Standard directory structure

Regardless of the single versus multiple repositories debate each service will have its
own directory. One of the best optimizations to allow developers to cross between
projects quickly is to maintain a standard directory structure.

v services

v email Service
ARM templates
build scripts
sIrc
tests

v Login Service
ARM templates
build scripts
Src

tests

Figure 10-4 - Standard directory structure.

Whenever a new project is created, a template that puts in place the correct structure
should be used. This template can also include such useful items as a skeleton README
file and an azure-pipelines.yml. In any microservice architecture, a high degree of

variance between projects makes bulk operations against the services more difficult.

There are many tools that can provide templating for an entire directory, containing
several source code directories. Yeoman® is popular in the JavaScript world and GitHub
have recently released Repository Templates, which provide much of the same

functionality.

Task management

Managing tasks in any project can be difficult. Up front there are countless questions to
be answered about the sort of workflows to set up to ensure optimal developer

productivity.

Cloud-native applications tend to be smaller than traditional software products or at
least they're divided into smaller services. Tracking of issues or tasks related to these
services remains as important as with any other software project. Nobody wants to lose
track of some work item or explain to a customer that their issue wasn't properly
logged. Boards are configured at the project level but within each project, areas can be
defined. These allow breaking down issues across several components. The advantage
to keeping all the work for the entire application in one place is that it's easy to move

work items from one team to another as they're understood better.

Azure DevOps comes with a number of popular templates pre-configured. In the most
basic configuration, all that is needed to know is what's in the backlog, what people are
working on, and what's done. It's important to have this visibility into the process of
building software, so that work can be prioritized and completed tasks reported to the
customer. Of course, few software projects stick to a process as simple as to do, doing,

and done. It doesn't take long for people to start adding steps like QA or Detailed

Specification to the process.

One of the more important parts of Agile methodologies is self-introspection at regular
intervals. These reviews are meant to provide insight into what problems the team is
facing and how they can be improved. Frequently, this means changing the flow of
issues and features through the development process. So, it's perfectly healthy to

expand the layouts of the boards with additional stages.

The stages in the boards aren't the only organizational tool. Depending on the
configuration of the board, there's a hierarchy of work items. The most granular item
that can appear on a board is a task. Out of the box a task contains fields for a title,
description, a priority, an estimate of the amount of work remaining and the ability to
link to other work items or development items (branches, commits, pull requests, builds,
and so forth). Work items can be classified into different areas of the application and
different iterations (sprints) to make finding them easier.

https://yeoman.io/
https://yeoman.io/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/
https://github.blog/2019-06-06-generate-new-repositories-with-repository-templates/

Work Items S Back to Work Items

NEW TASK *

Add "remember me" button to login screen

° Simon Timms ¥ 0 comments Add tag

State To Do Area AzureCamp2019

Reason Added to backlog Iteration AzureCamp2019 Details D) & 0
Description 7 o~ Planning Development

Users would like the site to remember them so they don't have to re-login. This should Prierity + Addlink

require changing the expiry of the login cookie depending on if they have the remember me 2

checkbox clicked. Activity

Related Work
Remaining Work

Authenticate Here: + Add link v
8

User Name

(-~}
~
c
I
Il
N
<
>
<

U =% Av © <= -2 b AV | A

Figure 10-5 - Task in Azure DevOps.

The description field supports the normal styles you'd expect (bold, italic underscore
and strike through) and the ability to insert images. This makes it a powerful tool for use
when specifying work or bugs.

Tasks can be rolled up into features, which define a larger unit of work. Features, in turn,
can be rolled up into epics. Classifying tasks in this hierarchy makes it much easier to
understand how close a large feature is to rolling out.

All processes > Basic @Help Y Filter by work item type nam

Work item types Backlog levels Projects

Name Description

Wi Epic Epics can be defined as a large piece of work that has one common objective. Use an Epic to track the progress of complex featur.

i Issue Issues track suggested improvements, changes or questions related to the project. Issues can also be used to break down an Epic i
Task Tasks track the actual work that needs to be done.

Ex Test Case Server-side data for a set of steps to be tested

Z Test Plan racks test activities for a specific milestone or release.

[Test Pl Track: f pecifi lest !

[z Test Suite Tracks test activites for a specific feature, requirement, or user story.

Figure 10-6 - Work item in Azure DevOps.

There are different kinds of views into the issues in Azure Boards. Items that aren't yet
scheduled appear in the backlog. From there, they can be assigned to a sprint. A sprint
is a time box during which it's expected some quantity of work will be completed. This
work can include tasks but also the resolution of tickets. Once there, the entire sprint
can be managed from the Sprint board section. This view shows how work is
progressing and includes a burn down chart to give an ever-updating estimate of if the

sprint will be successful.

https://learn.microsoft.com/en-us/azure/devops/boards/backlogs/define-features-epics?view=azure-devops&preserve-view=true

O, AzureCamp2019 Team v £ June 8 - June 29
15 work days remaining

Taskboard ~ Backlog ~ Capacity -+ New Work Item O, sprint1 v & Person:All v FH Y & S

2 Collapse all ToDo 8h Doing Done

Unparented 2 Add "remember me"
button to login screen

e Simon Timms 8

State To Do

8h

Figure 10-7 - Board in Azure DevOps.

By now, it should be apparent that there's a great deal of power in the Boards in Azure
DevOps. For developers, there are easy views of what is being worked on. For project
managers views into upcoming work as well as an overview of existing work. For
managers, there are plenty of reports about resourcing and capacity. Unfortunately,
there's nothing magical about cloud-native applications that eliminate the need to track
work. But if you must track work, there are a few places where the experience is better
than in Azure DevOps.

Cl/CD pipelines

Almost no change in the software development life cycle has been so revolutionary as
the advent of continuous integration (Cl) and continuous delivery (CD). Building and
running automated tests against the source code of a project as soon as a change is
checked in catches mistakes early. Prior to the advent of continuous integration builds, it
wouldn't be uncommon to pull code from the repository and find that it didn't pass
tests or couldn't even be built. This resulted in tracking down the source of the

breakage.

Traditionally shipping software to the production environment required extensive
documentation and a list of steps. Each one of these steps needed to be manually

completed in a very error prone process.

&
&
&
O
O
&
&
O

Figure 10-8 - Checklist.

The sister of continuous integration is continuous delivery in which the freshly built
packages are deployed to an environment. The manual process can't scale to match the
speed of development so automation becomes more important. Checklists are replaced

by scripts that can execute the same tasks faster and more accurately than any human.

The environment to which continuous delivery delivers might be a test environment or,
as is being done by many major technology companies, it could be the production
environment. The latter requires an investment in high-quality tests that can give
confidence that a change isn't going to break production for users. In the same way that
continuous integration caught issues in the code early continuous delivery catches

issues in the deployment process early.

The importance of automating the build and delivery process is accentuated by cloud-
native applications. Deployments happen more frequently and to more environments so
manually deploying borders on impossible.

Azure Builds

Azure DevOps provides a set of tools to make continuous integration and deployment
easier than ever. These tools are located under Azure Pipelines. The first of them is
Azure Builds, which is a tool for running YAML-based build definitions at scale. Users can
either bring their own build machines (great for if the build requires a meticulously set
up environment) or use a machine from a constantly refreshed pool of Azure hosted

virtual machines. These hosted build agents come pre-installed with a wide range of

development tools for not just .NET development but for everything from Java to
Python to iPhone development.

DevOps includes a wide range of out of the box build definitions that can be customized
for any build. The build definitions are defined in a file called azure-pipelines.yml and
checked into the repository so they can be versioned along with the source code. This
makes it much easier to make changes to the build pipeline in a branch as the changes
can be checked into just that branch. An example azure-pipelines.yml for building an

ASP.NET web application on full framework is show in Figure 10-9.
yml

name: $(rev:r)

variables:
version: 9.2.0.$(Build.BuildNumber)
solution: Portals.sln
artifactName: drop
buildPlatform: any cpu
buildConfiguration: release

pool:
name: Hosted VisualStudio
demands:
- msbuild
- visualstudio
- vstest

steps:

- task: NuGetToolInstaller@o
displayName: 'Use NuGet 4.4.1°'
inputs:

versionSpec: 4.4.1

- task: NuGetCommand@2
displayName: 'NuGet restore'
inputs:

restoreSolution: '$(solution)’

- task: VSBuild@l
displayName: 'Build solution'
inputs:
solution: '$(solution)’
msbuildArgs: '-p:DeployOnBuild=true -p:WebPublishMethod=Package -
p:PackageAsSingleFile=true -p:SkipInvalidConfigurations=true -
p:PackagelLocation="$(build.artifactstagingdirectory)\\""
platform: '$(buildPlatform)'’
configuration: '$(buildConfiguration)’

- task: VSTest@2
displayName: 'Test Assemblies'
inputs:

testAssemblyVer2: |
\¢(buildConfiguration)*test*.dll
!**\Obj**
I**¥*testadapter.dll

platform: '$(buildPlatform)’

configuration: '$(buildConfiguration)’

- task: CopyFiles@2
displayName: 'Copy UI Test Files to: $(build.artifactstagingdirectory)'’
inputs:
SourceFolder: UITests
TargetFolder: '$(build.artifactstagingdirectory)/uitests’

- task: PublishBuildArtifacts@l
displayName: 'Publish Artifact'
inputs:
PathtoPublish: '$(build.artifactstagingdirectory)’
ArtifactName: '$(artifactName)'’
condition: succeededOrFailed()

Figure 10-9 - A sample azure-pipelines.yml

This build definition uses a number of built-in tasks that make creating builds as simple
as building a Lego set (simpler than the giant Millennium Falcon). For instance, the
NuGet task restores NuGet packages, while the VSBuild task calls the Visual Studio build
tools to perform the actual compilation. There are hundreds of different tasks available
in Azure DevOps, with thousands more that are maintained by the community. It's likely
that no matter what build tasks you're looking to run, somebody has built one already.

Builds can be triggered manually, by a check-in, on a schedule, or by the completion of
another build. In most cases, building on every check-in is desirable. Builds can be
filtered so that different builds run against different parts of the repository or against
different branches. This allows for scenarios like running fast builds with reduced testing
on pull requests and running a full regression suite against the trunk on a nightly basis.

The end result of a build is a collection of files known as build artifacts. These artifacts
can be passed along to the next step in the build process or added to an Azure Artifacts

feed, so they can be consumed by other builds.

Azure DevOps releases

Builds take care of compiling the software into a shippable package, but the artifacts still
need to be pushed out to a testing environment to complete continuous delivery. For
this, Azure DevOps uses a separate tool called Releases. The Releases tool makes use of
the same tasks' library that were available to the Build but introduce a concept of

"stages". A stage is an isolated environment into which the package is installed. For

instance, a product might make use of a development, a QA, and a production
environment. Code is continuously delivered into the development environment where
automated tests can be run against it. Once those tests pass the release moves onto the
QA environment for manual testing. Finally, the code is pushed to production where it's
visible to everybody.

% Develop Q % QA Q % Production Q
K | 1job, 1task 82 | 1job, 1task 82 | 1job, 1task

Figure 10-10 - Release pipeline

Each stage in the build can be automatically triggered by the completion of the previous
phase. In many cases, however, this isn't desirable. Moving code into production might
require approval from somebody. The Releases tool supports this by allowing approvers
at each step of the release pipeline. Rules can be set up such that a specific person or
group of people must sign off on a release before it makes into production. These gates
allow for manual quality checks and also for compliance with any regulatory
requirements related to control what goes into production.

Everybody gets a build pipeline

There's no cost to configuring many build pipelines, so it's advantageous to have at
least one build pipeline per microservice. Ideally, microservices are independently
deployable to any environment so having each one able to be released via its own
pipeline without releasing a mass of unrelated code is perfect. Each pipeline can have its

own set of approvals allowing for variations in build process for each service.

Versioning releases

One drawback to using the Releases functionality is that it can't be defined in a
checked-in azure-pipelines.yml file. There are many reasons you might want to do that
from having per-branch release definitions to including a release skeleton in your
project template. Fortunately, work is ongoing to shift some of the stages support into
the Build component. This will be known as multi-stage build and the first version is

available now !

Previous m

https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/
https://devblogs.microsoft.com/devops/whats-new-with-azure-pipelines/

Feature flags

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

In chapter 1, we affirmed that cloud native is much about speed and agility. Users
expect rapid responsiveness, innovative features, and zero downtime. Feature flags are
a modern deployment technique that helps increase agility for cloud-native applications.
They enable you to deploy new features into a production environment, but restrict their
availability. With the flick of a switch, you can activate a new feature for specific users
without restarting the app or deploying new code. They separate the release of new
features from their code deployment.

Feature flags are built upon conditional logic that control visibility of functionality for
users at run time. In modern cloud-native systems, it's common to deploy new features
into production early, but test them with a limited audience. As confidence increases,

the feature can be incrementally rolled out to wider audiences.
Other use cases for feature flags include:

e Restrict premium functionality to specific customer groups willing to pay higher
subscription fees.

e Stabilize a system by quickly deactivating a problem feature, avoiding the risks of a
rollback or immediate hotfix.

e Disable an optional feature with high resource consumption during peak usage

periods.

https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

e Conduct experimental feature releases to small user segments to validate

feasibility and popularity.

Feature flags also promote trunk-based development. It's a source-control branching
model where developers collaborate on features in a single branch. The approach
minimizes the risk and complexity of merging large numbers of long-running feature

branches. Features are unavailable until activated.

Implementing feature flags

At its core, a feature flag is a reference to a simple decision object. It returns a Boolean
state of on or off. The flag typically wraps a block of code that encapsulates a feature
capability. The state of the flag determines whether that code block executes for a given

user. Figure 10-11 shows the implementation.

C#

if (featureFlag) {

// Run this code block if the featureFlag value is true
} else {

// Run this code block if the featureFlag value is false

}

Figure 10-11 - Simple feature flag implementation.
Note how this approach separates the decision logic from the feature code.

In chapter 1, we discussed the Twelve-Factor App. The guidance recommended keeping
configuration settings external from application executable code. When needed, settings
can be read in from the external source. Feature flag configuration values should also be
independent from their codebase. By externalizing flag configuration in a separate
repository, you can change flag state without modifying and redeploying the

application.

Azure App Configuration provides a centralized repository for feature flags. With it, you
define different kinds of feature flags and manipulate their states quickly and
confidently. You add the App Configuration client libraries to your application to enable

feature flag functionality. Various programming language frameworks are supported.

Feature flags can be easily implemented in an ASP.NET Core service. Installing the .NET
Feature Management libraries and App Configuration provider enable you to
declaratively add feature flags to your code. They enable FeatureGate attributes so that

you don't have to manually write if statements across your codebase.

https://learn.microsoft.com/en-us/azure/azure-app-configuration/overview
https://learn.microsoft.com/en-us/azure/azure-app-configuration/use-feature-flags-dotnet-core

Once configured in your Startup class, you can add feature flag functionality at the
controller, action, or middleware level. Figure 10-12 presents controller and action

implementation:

C#

[FeatureGate(MyFeatureFlags.FeatureA)]
public class ProductController : Controller

{

C#

[FeatureGate(MyFeatureFlags.FeatureA)]
public IActionResult UpdateProductStatus()

{
return ObjectResult(ProductDto);

Figure 10-12 - Feature flag implementation in a controller and action.

If a feature flag is disabled, the user will receive a 404 (Not Found) status code with no

response body.

Feature flags can also be injected directly into C# classes. Figure 10-13 shows feature

flag injection:
C#

public class ProductController : Controller

{
private readonly IFeatureManager _featureManager;
public ProductController(IFeatureManager featureManager)
{
_featureManager = featureManager;
}
}

Figure 10-13 - Feature flag injection into a class.

The Feature Management libraries manage the feature flag lifecycle behind the scenes.
For example, to minimize high numbers of calls to the configuration store, the libraries
cache flag states for a specified duration. They can guarantee the immutability of flag

states during a request call. They also offer a Point-in-time snapshot. You can

reconstruct the history of any key-value and provide its past value at any moment within

the previous seven days.

Infrastructure as code

Article « 06/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

Cloud-native systems embrace microservices, containers, and modern system design to
achieve speed and agility. They provide automated build and release stages to ensure
consistent and quality code. But, that's only part of the story. How do you provision the

cloud environments upon which these systems run?

Modern cloud-native applications embrace the widely accepted practice of
Infrastructure as Code, or Iac. With laC, you automate platform provisioning. You
essentially apply software engineering practices such as testing and versioning to your
DevOps practices. Your infrastructure and deployments are automated, consistent, and
repeatable. Just as continuous delivery automated the traditional model of manual
deployments, Infrastructure as Code (laC) is evolving how application environments are
managed.

Tools like Azure Resource Manager (ARM), Terraform, and the Azure Command Line

Interface (CLI) enable you to declaratively script the cloud infrastructure you require.

Azure Resource Manager templates

ARM stands for Azure Resource Manager. It's an API provisioning engine that is built
into Azure and exposed as an API service. ARM enables you to deploy, update, delete,
and manage the resources contained in Azure resource group in a single, coordinated

https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

operation. You provide the engine with a JSON-based template that specifies the
resources you require and their configuration. ARM automatically orchestrates the
deployment in the correct order respecting dependencies. The engine ensures
idempotency. If a desired resource already exists with the same configuration,
provisioning will be ignored.

Azure Resource Manager templates are a JSON-based language for defining various
resources in Azure. The basic schema looks something like Figure 10-14.

JSON

{

"$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",

"contentVersion": "",

"apiProfile": "",

"parameters": { },

"variables": { 1},

"functions": [1],

"resources": [1],

"outputs": { }

Figure 10-14 - The schema for a Resource Manager template

Within this template, one might define a storage container inside the resources section
like so:

JSON

"resources": [

{
"type": "Microsoft.Storage/storageAccounts",
"name": "[variables('storageAccountName')]",
"location”: "[parameters('location')]",
"apiVersion": "2018-07-01",
"sku": {

"name": "[parameters('storageAccountType')]"

¥
"kind": "StorageVv2",
"properties": {}

}

1,

Figure 10-15 - An example of a storage account defined in a Resource Manager
template

An ARM template can be parameterized with dynamic environment and configuration
information. Doing so enables it to be reused to define different environments, such as
development, QA, or production. Normally, the template creates all resources within a
single Azure resource group. It's possible to define multiple resource groups in a single
Resource Manager template, if needed. You can delete all resources in an environment
by deleting the resource group itself. Cost analysis can also be run at the resource group
level, allowing for quick accounting of how much each environment is costing.

There are many examples of ARM templates available in the Azure Quickstart
Templates @ project on GitHub. They can help accelerate creating a new template or
modifying an existing one.

Resource Manager templates can be run in many of ways. Perhaps the simplest way is to
simply paste them into the Azure portal. For experimental deployments, this method can
be quick. They can also be run as part of a build or release process in Azure DevOps.
There are tasks that will leverage connections into Azure to run the templates. Changes
to Resource Manager templates are applied incrementally, meaning that to add a new
resource requires just adding it to the template. The tooling will reconcile differences
between the current resources and those defined in the template. Resources will then be
created or altered so they match what is defined in the template.

Terraform

Cloud-native applications are often constructed to be cloud agnostic.Being so means

the application isn't tightly coupled to a particular cloud vendor and can be deployed to
any public cloud.

Terraform ' is a commercial templating tool that can provision cloud-native applications
across all the major cloud players: Azure, Google Cloud Platform, AWS, and AliCloud.
Instead of using JSON as the template definition language, it uses the slightly more

terse HCL (Hashicorp Configuration Language).

An example Terraform file that does the same as the previous Resource Manager
template (Figure 10-15) is shown in Figure 10-16:

Terraform

provider "azurerm" {
version = "=1.28.0"

}

resource "azurerm_resource_group"” "testrg" {
name = "production"
location = "West US"

https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates
https://github.com/Azure/azure-quickstart-templates
https://www.terraform.io/
https://www.terraform.io/

}

resource "azurerm_storage account" "testsa" {

name = "${var.storageAccountName}"
resource_group_name = "${azurerm_resource_group.testrg.name}"
location = "${var.region}"

account_tier = "${var.tier}"

account_replication_type = "${var.replicationType}"

Figure 10-16 - An example of a Resource Manager template

Terraform also provides intuitive error messages for problem templates. There's also a

handy validate task that can be used in the build phase to catch template errors early.

As with Resource Manager templates, command-line tools are available to deploy
Terraform templates. There are also community-created tasks in Azure Pipelines that can

validate and apply Terraform templates.

Sometimes Terraform and ARM templates output meaningful values, such as a
connection string to a newly created database. This information can be captured in the

build pipeline and used in subsequent tasks.

Azure CLI Scripts and Tasks

Finally, you can leverage Azure CLI to declaratively script your cloud infrastructure. Azure
CLI scripts can be created, found, and shared to provision and configure almost any
Azure resource. The CLI is simple to use with a gentle learning curve. Scripts are
executed within either PowerShell or Bash. They're also straightforward to debug,

especially when compared with ARM templates.

Azure CLI scripts work well when you need to tear down and redeploy your
infrastructure. Updating an existing environment can be tricky. Many CLI commands
aren't idempotent. That means they'll recreate the resource each time they're run, even
if the resource already exists. It's always possible to add code that checks for the
existence of each resource before creating it. But, doing so, your script can become

bloated and difficult to manage.

These scripts can also be embedded in Azure DevOps pipelines as Azure CLI tasks.

Executing the pipeline invokes the script.

Figure 10-17 shows a YAML snippet that lists the version of Azure CLI and the details of

the subscription. Note how Azure CLI commands are included in an inline script.

https://learn.microsoft.com/en-us/cli/azure/

YAML

- task: AzureCLI@2
displayName: Azure CLI
inputs:
azureSubscription: <Name of the Azure Resource Manager service
connection>
scriptType: ps
scriptLocation: inlineScript
inlineScript: |
az --version
az account show

Figure 10-17 - Azure CLI script

In the article, What is Infrastructure as Code, Author Sam Guckenheimer describes how,
"Teams who implement laC can deliver stable environments rapidly and at scale. Teams
avoid manual configuration of environments and enforce consistency by representing
the desired state of their environments via code. Infrastructure deployments with laC are
repeatable and prevent runtime issues caused by configuration drift or missing
dependencies. DevOps teams can work together with a unified set of practices and tools

to deliver applications and their supporting infrastructure rapidly, reliably, and at scale."

https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code

Cloud Native Application Bundles

Article « 04/07/2022

s N

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

A key property of cloud-native applications is that they leverage the capabilities of the
cloud to speed up development. This design often means that a full application uses
different kinds of technologies. Applications may be shipped in Docker containers, some
services may use Azure Functions, while other parts may run directly on virtual machines
allocated on large metal servers with hardware GPU acceleration. No two cloud-native
applications are the same, so it's been difficult to provide a single mechanism for
shipping them.

The Docker containers may run on Kubernetes using a Helm Chart for deployment. The
Azure Functions may be allocated using Terraform templates. Finally, the virtual
machines may be allocated using Terraform but built out using Ansible. This is a large
variety of technologies and there has been no way to package them all together into a
reasonable package. Until now.

Cloud Native Application Bundles (CNABs) are a joint effort by many community-
minded companies such as Microsoft, Docker, and HashiCorp to develop a specification

to package distributed applications.

The effort was announced in December of 2018, so there's still a fair bit of work to do to
expose the effort to the greater community. However, there's already an open
specification and a reference implementation known as Duffle . This tool, which was
written in Go, is a joint effort between Docker and Microsoft.

https://github.com/deislabs/cnab-spec
https://github.com/deislabs/cnab-spec
https://github.com/deislabs/cnab-spec
https://duffle.sh/
https://duffle.sh/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

The CNABs can contain different kinds of installation technologies. This aspect allows
things like Helm Charts, Terraform templates, and Ansible Playbooks to coexist in the
same package. Once built, the packages are self-contained and portable; they can be
installed from a USB stick. The packages are cryptographically signed to ensure they

originate from the party they claim.

The core of a CNAB is a file called bundle.json. This file defines the contents of the

bundle, be they Terraform or images or anything else. Figure 11-9 defines a CNAB that
invokes some Terraform. Notice, however, that it actually defines an invocation image
that is used to invoke the Terraform. When packaged up, the Docker file that is located
in the cnab directory is built into a Docker image, which will be included in the bundle.
Having Terraform installed inside a Docker container in the bundle means that users

don't need to have Terraform installed on their machine to run the bundling.

JSON

"name": "terraform",
"version": "@0.1.0",
"schemaVersion": "v1.0.0-WD",
"parameters": {
"backend": {
"type": "boolean",
"defaultValue": false,
"destination": {
"env": "TF_VAR_backend"
}
}
s
"invocationImages": [
{
"imageType": "docker",
"image": "cnab/terraform:latest"
¥
1,

"credentials”: {
"tenant_id": {
"env": "TF_VAR_ tenant_id"
¥
"client_id": {
"env": "TF_VAR client_id"

¥
"client_secret": {

"env": "TF_VAR_client_secret"
}s

"subscription_id": {
"env": "TF_VAR subscription_id"
s
"ssh_authorized key": {
"env": "TF_VAR ssh_authorized key"

¥
s
"actions": {
"status": {
"modifies": true

}

Figure 10-18 - An example Terraform file

The bundle.json also defines a set of parameters that are passed down into the
Terraform. Parameterization of the bundle allows for installation in various different

environments.

The CNAB format is also flexible, allowing it to be used against any cloud. It can even be

used against on-premises solutions such as OpenStack .

DevOps Decisions

There are so many great tools in the DevOps space these days and even more fantastic
books and papers on how to succeed. A favorite book to get started on the DevOps
journey is The Phoenix Project @, which follows the transformation of a fictional
company from NoOps to DevOps. One thing is for certain: DevOps is no longer a "nice
to have" when deploying complex, Cloud Native Applications. It's a requirement and

should be planned for and resourced at the start of any project.

References

Azure DevOps @

Azure Resource Manager
Terraform @
Azure CLI

https://www.openstack.org/
https://www.openstack.org/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://www.oreilly.com/library/view/the-phoenix-project/9781457191350/
https://azure.microsoft.com/services/devops/
https://azure.microsoft.com/services/devops/
https://learn.microsoft.com/en-us/azure/azure-resource-manager/management/overview
https://www.terraform.io/
https://www.terraform.io/
https://learn.microsoft.com/en-us/cli/azure/

Summary: Architecting cloud-native
apps

Article « 05/26/2022

e A

Q Tip

This content is an excerpt from the eBook, Architecting Cloud Native .NET

Applications for Azure, available on .NET Docs or as a free downloadable PDF that

can be read offline.

Download PDF

In summary, here are important conclusions from this guide:

¢ Cloud-native is about designing modern applications that embrace rapid change,
large scale, and resilience, in modern, dynamic environments such as public,

private, and hybrid clouds.

e The Cloud Native Computing Foundation @ (CNCF) is an influential open-source
consortium of over 300 major corporations. It's responsible for driving the
adoption of cloud-native computing across technology and cloud stacks.

e CNCF guidelines recommend that cloud-native applications embrace six important

pillars as shown in Figure 11-1:

https://www.cncf.io/
https://www.cncf.io/
https://learn.microsoft.com/en-us/dotnet/architecture/cloud-native
https://dotnet.microsoft.com/download/e-book/cloud-native-azure/pdf

| Containers]
.

-

I_/‘"’-- Modern --"'_
. Design -

Q0
000
(o)

Cloud Native App

~ Backing _-“"‘_I
__ Services __,-/

ra Micro T,
) R
\h__senrlces .

Automation >

e

-~

Cloud Infrastructure

Figure 11-1. Cloud-native foundational pillars

These cloud-native pillars include:

o The cloud and its underlying service model

o Modern design principles

o Microservices

o Containerization and container orchestration

o Cloud-based backing services, such as databases and message brokers

o Automation, including Infrastructure as Code and code deployment

Kubernetes is the hosting environment of choice for most cloud-native
applications. Smaller, simple services are sometimes hosted in serverless platforms,
such as Azure Functions. Among many key automation features, both
environments provide automatic scaling to handle fluctuating workload volumes.

Service communication becomes a significant design decision when constructing
a cloud-native application. Applications typically expose an API gateway to
manage front-end client communication. Then backend microservices strive to
communicate with each other implementing asynchronous communication
patterns, when possible.

gRPC is a modern, high-performance framework that evolves the age-old remote
procedure call (RPC) protocol. Cloud-native applications often embrace gRPC to
streamline messaging between back-end services. gRPC uses HTTP/2 for its
transport protocol. It can be up to 8x faster than JSON serialization with message
sizes 60-80% smaller. gRPC is open source and managed by the Cloud Native
Computing Foundation (CNCF).

Distributed data is a model often implemented by cloud-native applications.
Applications segregate business functionality into small, independent
microservices. Each microservice encapsulates its own dependencies, data, and
state. The classic shared database model evolves into one of many smaller

databases, each aligning with a microservice. When the smoke clears, we emerge

with a design that exposes a database-per-microservice model.

No-SQL databases refer to high-performance, non-relational data stores. They
excel in their ease-of-use, scalability, resilience, and availability characteristics. High
volume services that require sub second response time favor NoSQL datastores.
The proliferation of NoSQL technologies for distributed cloud-native systems can't

be overstated.

NewSQL is an emerging database technology that combines the distributed
scalability of NoSQL and the ACID guarantees of a relational database. NewSQL
databases target business systems that must process high-volumes of data, across
distributed environments, with full transactional/ACID compliance. The Cloud

Native Computing Foundation (CNCF) features several NewSQL database projects.

Resiliency is the ability of your system to react to failure and still remain functional.
Cloud-native systems embrace distributed architecture where failure is inevitable.
Applications must be constructed to respond elegantly to failure and quickly return

to a fully functioning state.

Service meshes are a configurable infrastructure layer with built-in capabilities to
handle service communication and other cross-cutting challenges. They decouple
cross-cutting responsibilities from your business code. These responsibilities move
into a service proxy. Referred to as the sidecar pattern, the proxy is deployed into

a separate process to provide isolation from your business code.

Observability is a key design consideration for cloud-native applications. As
services are distributed across a cluster of nodes, centralized logging, monitoring,
and alerts, become mandatory. Azure Monitor is a collection of cloud-based tools
designed to provide visibility into the state of your system.

Infrastructure as Code is a widely accepted practice that automates platform
provisioning. Your infrastructure and deployments are automated, consistent, and
repeatable. Tools like Azure Resource Manager, Terraform, and the Azure CLI,

enable you to declaratively script the cloud infrastructure you require.

Code automation is a requirement for cloud-native applications. Modern CI/CD
systems help fulfill this principle. They provide separate build and deployment
steps that help ensure consistent and quality code. The build stage transforms the
code into a binary artifact. The release stage picks up the binary artifact, applies
external environment configuration, and deploys it to a specified environment.

Azure DevOps and GitHub are full-featured DevOps environments.

Previous

	Architecting Cloud-Native .NET Apps for Azure
	Introduction to cloud-native applications
	What is Cloud Native?
	Candidate apps for Cloud Native

	Introducing the eShopOnContainers reference app
	Mapping eShopOnContainers to Azure Services
	Deploying eShopOnContainers to Azure
	Centralized configuration

	Scaling cloud-native .NET applications
	Leveraging containers and orchestrators
	Leveraging serverless functions
	Combining containers and serverless approaches
	Deploying containers in Azure
	Scaling containers and serverless applications
	Other deployment options

	Cloud-native communication patterns
	Front-end client communication
	Service to service communication
	gRPC
	Service Mesh communication infrastructure

	Cloud-native data patterns
	Relational vs. NoSQL data
	Caching in a cloud-native application
	Elasticsearch in Azure

	Cloud-native resiliency
	Application resiliency patterns
	Cloud infrastructure resiliency with Azure
	Resilient communication

	Monitoring and health
	Observability patterns
	Logging with Elastic Stack
	Monitoring in Azure Kubernetes Services
	Azure Monitor

	Cloud-native identity
	Authentication and authorization in cloud-native apps
	Azure Active Directory
	Identity Server

	Cloud-native security
	Azure Security for cloud-native apps

	DevOps
	Feature flags
	Infrastructure as Code
	Cloud Native Application Bundles

	Summary - Architecting cloud-native .NET apps for Azure

